New microgrid network proposed
Kwasinski maintains that a microgrid-based power plant with its own local power sources and independent control would be more dependable, efficient, and cost effective than traditional telecom power systems.
Microgrids would also be a quick and inexpensive way to include renewable energy sources for both existing and developing systems.
"There has been surprisingly little research on disaster damage and restoration of telecommunications systems," says Kwasinski. "My survey of the Gulf coast after Katrina showed how devastating a single downed line or incapacitated substation can be. The answer is diverse power input. You integrate different types of local power sources with diverse energy delivery infrastructures through multiple-input converter modules."
Since the communications industry power standard is direct current (DC) local networks, Kwasinski is exploring DC generation systems using a microgrid-based telecom power plant with a modular distributed architecture. Energy would come from a mixture of renewable energy sources, microturbines, fuel cells, and interconnection to the existing utility grid. Converters in secondary distribution frames would isolate short circuit currents. Since the utility grid is a secondary source, the microgrid would be protected against the grid's surges and failures.
The savings would be generous. Microgrids could "sell" excess power to the utility grid.
Costs decrease because of reduced energy storage, less down time, equipment operating at maximum efficiency, lower hardware expense, and optimal power input control based on energy costs.
"I think the most exciting aspect of the research is how flexible this approach is," says Kwasinski. "It works for developing countries who can add components to the system as they can afford it. Existing systems can easily be retrofitted with a microgrid system operating as a secondary distribution method. Small devices like solar panels and windmills can be added ad hoc, making for a painless transition to renewable energy at a competitive cost."
Related News

Zapping elderly brains with electricity improves short-term memory — for almost an hour
LONDON - To read this sentence, you hold the words in your mind for a few seconds until you reach the period. As you do, neurons in your brain fire in coordinated bursts, generating electrical waves that let you hold information for as long as it is needed. But as we age, these brain waves start to get out of sync, causing short-term memory to falter. A new study finds that jolting specific brain areas with a periodic burst of electricity might reverse the deficit—temporarily, at least.
The work makes “a strong case” for the idea that out-of-sync brain waves in…