First Solar faces new challenges

By Phoenix Business Journal


CSA Z463 Electrical Maintenance

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 6 hours Instructor-led
  • Group Training Available
Regular Price:
$249
Coupon Price:
$199
Reserve Your Seat Today
First Solar has been one of the biggest players in solar, but it has some challenges on the horizon.

ItÂ’s not insurmountable for a company that is projecting to make between $3.7 billion and $3.9 billion for 2011, but the solar market can change fast.

On a conference call with analysts following the release of its first quarter earnings, First Solar officials said the challenges arenÂ’t unique.

One big hurdle the company has to deal with is financing from the U.S. Department of EnergyÂ’s loan guarantee program. Funds from the program as going into a deal that would have First Solar selling its Agua Caliente power plant to NRG Energy Inc. NRG has been pegged to get $967 million from the DOE program, but the deal is still pending.

ItÂ’s similar to what happened with Abengoa Solar on its Solana Generating Station. The company received notice of the loan guarantee in July 2010 but didnÂ’t finalize the deal until December.

“The process on the DOE side has taken just a little longer than expected,” said Larry Polizzotto, the company’s vice president of investor relations. “That could end up getting done by the end of the second quarter, but it might go into the third quarter.”

First Solar has three other projects in the DOE pipeline, and all seem to be moving forward, Polizzotto said.

Other issues involved the uncertainty over feed-in tariff programs in Europe. Several European countries, including Spain and Germany, have either dropped the tariffs or are planning to do so. The tariffs are a fixed amount that solar energy providers receive from utilities to buy power.

The result has First Solar potentially accelerating its North American pipeline if the demand in Europe isnÂ’t there. The company added 50 megawatts to its plans for this year in North America, and that number could grow further.

Competitive challenges may lie in the future. SunPower Corp. announced that French oil giant Total SA was putting in an estimated $4.2 billion to take a majority stake in the silicon panel manufacturer based in San Jose. That could add muscle to SunPowerÂ’s efforts to bring its panels to a larger market.

That comes after a mid-April announcement that General Electric was getting back into the solar market and using the same type of thin-film panels First Solar has used to develop solar systems.

GE doesnÂ’t have the development pipeline First Solar does, but it does have capital, and it has been a lender for solar systems in the past.

Rob Gillette, CEO of First Solar, said he expects other large companies to jump into solar as it becomes more cost effective and prices continue to fall.

“I think there will be more and more large companies that will jump into the industry, and we need a lot of viable competitors to really drive the technology into the utility sector,” he said.

Related News

The Phillipines wants nuclear power to be included in the country's energy mix as the demand for electricity is expected to rise.

Philippines Nuclear Energy Policy aims to add nuclear power to the energy mix via executive order, meeting rising electricity demand with 24/7 baseload while balancing safety, renewables, and imported fuel dependence in the Philippines.

 

Key Points

A government plan to include nuclear power in the energy mix to meet demand, ensure baseload, and uphold safety.

✅ Executive order proposed by Energy Secretary Alfonso Cusi

✅ Targets 24/7 baseload, rising electricity demand

✅ Balances safety, renewables, and energy security

 

Phillipines Presidential spokesman Salvador Panelo said Energy Secretary Alfonso Cusi made the proposal during last Monday's Cabinet meeting in Malacaaang. "Secretary Cusi likewise sought the approval of the issuance of a proposed executive order for the inclusion of nuclear power, including next-gen nuclear options in the country's energy mix as the Philippines is expected to the rapid growth in electricity and electricity demand, in which, 24/7 power is essential and necessary," Panelo said in a statement.

Panelo said Duterte would study the energy chief's proposal, as China's nuclear development underscores regional momentum. In the 1960s until the mid 80s, the late president Ferdinand Marcos adopted a nuclear energy program and built the Bataan Nuclear Plant.

The nuclear plant was mothballed after Corazon Aquino became president in 1986. There have been calls to revive the nuclear plant, saying it would help address the Philippines' energy supply issues. Some groups, however, said such move would be expensive and would endanger the lives of people living near the facility, citing Three Mile Island as a cautionary example.

Panelo said proposals to revive the Bataan Nuclear Plant were not discussed during the Cabinet meeting, even as debates like California's renewable classification continue to shape perceptions. Indigenous energy sources natural gas, hydro, coal, oil, geothermal, wind, solar, biomassand ethanol constitute more than half or 59.6%of the Philippines' energy mix.

Imported oil make up 31.7% while imported coal, reflecting the country's coal dependency, contribute about 8.7%.

Imported ethanol make up 0.1% of the energy mix, even as interest in atomic energy rises globally.

In 2018, Duterte said safety should be the priority when deciding whether to tap nuclear energy for the country's power needs, as countries like India's nuclear restart proceed with their own safeguards.

 

Related News

View more

UK windfarms generate record amount of electricity during Storm Malik

UK Wind Power Record as Storm Malik boosts renewable electricity, with National Grid reporting 19,500 megawatts in Scotland, cutting fossil fuel use and easing market prices on the path toward net zero targets.

 

Key Points

An all-time peak in UK wind generation, reaching 19,500 MW during Storm Malik, supplying over half of electricity.

✅ Peak: 19,500 MW, over 50% of UK electricity.

✅ Driven by Storm Malik; strongest winds in Scotland.

✅ Lowered market prices; reduced fossil fuel generation.

 

The UK’s windfarms generated a new record for wind power generation over the weekend as Storm Malik battered parts of Scotland and northern England.

Wind speeds of up to 100 miles an hour recorded in Scotland's wind farms helped wind power generation to rise to a provisional all-time high of more than 19,500 megawatts – or more than half the UK’s electricity – according to data from National Grid.

National Grid’s electricity system operator said that although it recognised the new milestone towards the UK’s ‘net zero’ carbon future, where wind is leading the power mix according to recent analyses, it was “also thinking of those affected by Storm Malik”.

The deadly storm caused widespread disruption over the weekend, leaving thousands without electricity and killing two people.

Many of the areas affected by Storm Malik were also hit in December by Storm Arwen, which caused the most severe disruption to power supplies since 2005, leaving almost a million homes without power for up to 12 days.

The winter storms have followed a summer of low wind power generation across the UK and Europe, even though wind produced more electricity than coal for the first time in 2016, which caused increased use of gas power plants during a global supply shortfall.

Gas markets around the world reached record highs due to rising demand for gas, and UK electricity prices hit a 10-year high as economies have rebounded from the economic shock of the Covid-19 pandemic. In the UK, electricity market prices reached an all-time high of more than £424.60 a megawatt-hour in September, compared with an average price of £44/MWh in the same month the year before.

The UK’s weekend surge in renewable electricity helped to provide a temporary reprieve from its heavy reliance on fossil fuel generation in recent months, and on some days wind has been the main source of UK electricity, which has caused market prices to reach record highs.

The market price for electricity on Saturday fell to £150.59 pounds a megawatt-hour, the lowest level since 3 January, while UK peak power prices have risen with the price for power on Sunday, when wind was expected to fall, jumping to more than £193.50/MWh.

The new wind generation record bettered a high recorded last year when the gusty May bank holiday weekend recorded 17.6GW.

 

Related News

View more

Here are 3 ways to find out where your electricity comes from

US energy mix shows how the electric grid blends renewables, fossil fuels, nuclear, and hydro, varying by ISO/RTO markets, utilities, and state policies, affecting carbon emissions, pricing, reliability, and access.

 

Key Points

The US energy mix is the grid's source breakdown by region: fossil fuels, renewables, nuclear, and hydro.

✅ Check ISO or RTO dashboards for real-time generation by fuel source.

✅ Utilities may offer green power plans or RECs at modest premiums.

✅ Energy mix shifts with policy, pricing, and grid reliability needs.

 

There are few resources more important than energy. Sure, you may die if you don't eat for days. But your phone will die if you go too long without charging it. Energy feeds tech, the internet, city infrastructure, refrigerators, lights, and has evolved throughout U.S. history in profound ways. You get the idea. Yet unlike our other common needs, such as food, energy sources aren't exactly front of mind for most people. 

"I think a lot of people don't put a lot of bandwidth into thinking about this part of their lives," said Richard McMahon, the SVP of energy supply and finance at Edison Electric Institute, a trade group that represents investor-owned electric companies in the US. 

It makes sense. For most Americans, electricity is always there, and in many locations, there's not much of a choice involved, even as electricity demand is flat across the U.S. today. You sign up with a utility when you move into a new residence and pay your bills when they're due. 

But there's an important reality that indifference eschews: In 2018, a third of the energy-related carbon-dioxide emissions in the US came from the electric power sector, according to the US Energy Information Administration (EIA). 

A good chunk of that is from the residential sector, which consistently uses more energy than commercial customers, per EIA data.

Just as many people exercise choice when they eat, you typically also have a choice when it comes to your energy supply. That's not to say your current offering isn't what you want, or that switching will be easy or affordable, but "if you're a customer and want power with a certain attribute," McMahon said, "you can pretty much get it wherever you are." 

But first, you need to know the energy mix you have right now. As it turns out, it's not so straightforward. At all.

This brief guide may help. 

For some utility providers, you can find out if it publishes the energy mix online. Dominion Energy, which serves Idaho, North Carolina, Ohio, South Carolina, Utah, Virginia, West Virginia, and Wyoming, provides this information in a colored graphic. 

"Once you figure out who your utility is you can figure out what mix of resources they use," said Heidi Ratz, an electricity markets researcher at the World Resources Institute.

But not all utilities publish this information.

It has to do with their role in the grid and reflects utility industry trends in structure and markets. Some utility companies are vertically integrated; they generate power through nuclear plants or wind farms and distribute those electrons directly to their customers. Other utilities just distribute the power that different companies produce. 

Consider Consolidated Edison, or Con Ed, which distributes energy to parts of New York City. While reporting this story, Business Insider could not find information about the utility's energy mix online. When reached for comment, a spokesperson said, "we're indifferent to where it comes from."

That's because, in New York, distribution utilities like Con Ed often buy energy through a wholesale marketplace.

Take a look at this map. If you live in one of the colored regions, your electricity is sold on a wholesale market regulated by an organization called a regional transmission organization (RTO) or independent system operator (ISO). Distribution utilities like Con Ed often buy their energy through these markets, based on availability and cost, while raising questions about future utility revenue models as prices shift. 

Still, it's pretty easy to figure out where your energy comes from. Just look up the ISO or RTO website (such as NYISO or CAISO). Usually, these organizations will provide energy supply information in near-real time. 

That's exactly what Con Edison (which buys energy on the NYISO marketplace) suggested. As of Friday morning, roughly 40% of the energy on the market place was natural gas or other fossil fuels, 34% was nuclear, and about 22% was hydro. 

If you live in another region governed by an ISO or RTO, such as in most of California, you can do the same thing. Like NYISO, CAISO has a dashboard that shows (again, as of Friday morning) about 36% of the energy on the market comes from natural gas and more than 20% comes from renewables. 

In the map linked above, you'll notice that some of the ISOs and RTOs like MISO encompass enormous regions. That means that even if you figure out where the energy in your market comes from, it's not going to be geographically specific. But there are a couple of ways to drill down even further. 

The Environmental Protection Agency has a straightforward tool called Power Profiler. You can enter your zip code to see the fuel mix in your area. But it's not perfect. The data are from 2016 and, in some regions of the country like the upper Midwest, they aren't much more localized, and some import dirty electricity due to regional trading. 

The World Resources Institute also has a tool that allows you to see the electricity mix by state, based on 2017 data from EIA. These numbers represent power generation, not the electricity actually flowing into your sockets, but they offer a rough idea of what energy resources are operating in your state. 

One option is to check with your utility to see if it has a "green power" offering. Over 600 utilities across the country have one, according to the Climate Reality Project, though they often come at a slightly higher cost. It's typically on the scale of just a few more cents per kilowatt-hour. 

There are also independent, consumer-facing companies like Arcadia and Green Mountain Energy that allow you to source renewable energy, by virtually connecting you to community solar projects or purchasing Renewable Energy Certificates, or RECs, on your behalf, as America goes electric and more options emerge. 

"RECs measure an investment in a clean energy resource," Ratz said, in an email. "The goal of putting that resource on the grid is to push out the need for dirtier resources."

The good news: Even if you do nothing, your energy mix will get cleaner. Coal production has fallen to lows not seen since the 1980s, amid disruptions in coal and nuclear sectors that affect reliability and costs, while renewable electricity generation has doubled since 2008. So whether you like it or not, you'll be roped into the clean energy boom one way or another. 

 

Related News

View more

France Demonstrates the Role of Nuclear Power Plants

France Nuclear Power Strategy illustrates a low-carbon, reliable baseload complementing renewables in the energy transition, enhancing grid reliability, energy security, and emissions reduction, offering actionable lessons for Germany on infrastructure, policy, and public acceptance.

 

Key Points

France's nuclear strategy is a low-carbon baseload model supporting renewables, grid reliability, and energy security.

✅ Stable low-carbon baseload complements intermittent renewables

✅ Enhances grid reliability and national energy security

✅ Requires long-term investment, safety, and waste management

 

In recent months, France has showcased the critical role that nuclear power plants can play in an energy transition, offering valuable lessons for Germany and other countries grappling with their own energy challenges. As Europe continues to navigate its path towards a sustainable and reliable energy system, France's experience with nuclear energy underscores its potential benefits and the complexities involved, including outage risks in France that operators must manage effectively.

France, a long-time proponent of nuclear energy, generates about 70% of its electricity from nuclear power, making it one of the most nuclear-dependent countries in the world. This high reliance on nuclear energy has allowed France to maintain a stable and low-carbon electricity supply, which is increasingly significant as nations aim to reduce greenhouse gas emissions, even as Europe's nuclear capacity declines in several markets, and combat climate change.

Recent events in France have highlighted several key aspects of nuclear power's role in energy transition:

  1. Reliability and Stability: During periods of high renewable energy generation or extreme weather events, nuclear power plants have proven to be a stable and reliable source of electricity. Unlike solar and wind power, which are intermittent and depend on weather conditions, nuclear plants provide a consistent and continuous supply of power. This stability is crucial for maintaining grid reliability and ensuring that energy demand is met even when renewable sources are not producing electricity.

  2. Low Carbon Footprint: France’s commitment to nuclear energy has significantly contributed to its low carbon emissions. By relying heavily on nuclear power, France has managed to reduce its greenhouse gas emissions substantially compared to many other countries. This achievement is particularly relevant as Europe strives to meet ambitious climate targets, with debates over a nuclear option in Germany highlighting climate trade-offs, and reduce overall carbon footprints. The low emissions associated with nuclear power make it an important tool for achieving climate goals and transitioning away from fossil fuels.

  3. Energy Security: Nuclear power has played a vital role in France's energy security. The country’s extensive network of nuclear power plants ensures a stable and secure supply of electricity, reducing its dependency on imported energy sources. This energy security is particularly important in the context of global energy market fluctuations and geopolitical uncertainties. France’s experience demonstrates how nuclear energy can contribute to a nation’s energy independence and resilience.

  4. Economic Benefits: The nuclear industry in France also provides significant economic benefits. It supports thousands of jobs in construction, operation, and maintenance of power plants, as well as in the supply chain for nuclear fuel and waste management. Additionally, the stable and relatively low cost of nuclear-generated electricity can contribute to lower energy prices for consumers and businesses, enhancing economic stability.

Germany, in contrast, has been moving away from nuclear energy, particularly following the Fukushima disaster in 2011. The country has committed to phasing out its nuclear reactors by 2022 and focusing on expanding renewable energy sources such as wind and solar power. While Germany's renewable energy transition has made significant strides, it has also faced challenges related to grid stability, as Germany's energy balancing act illustrates for policymakers, energy storage, and maintaining reliable power supplies during periods of low renewable generation.

France’s experience with nuclear energy offers several lessons for Germany and other nations considering their own energy strategies:

  • Balanced Energy Mix: A diverse energy mix that includes nuclear power alongside renewable sources can help ensure a stable and reliable electricity supply, as ongoing discussions about a nuclear resurgence in Germany emphasize for policymakers today. While renewable energy is essential for reducing carbon emissions, it can be intermittent and may require backup from other sources to maintain grid reliability. Nuclear power can complement renewable energy by providing a steady and consistent supply of electricity.

  • Investment in Infrastructure: To maximize the benefits of nuclear energy, investment in infrastructure is crucial. This includes not only the construction and maintenance of power plants but also the development of waste management systems and safety protocols. France’s experience demonstrates the importance of long-term planning and investment to ensure the safe and effective use of nuclear technology.

  • Public Perception and Policy: Public perception of nuclear energy can significantly impact its adoption and deployment, and ongoing Franco-German nuclear disputes show how politics shape outcomes across borders. Transparent communication, rigorous safety standards, and effective waste management are essential for addressing public concerns and building trust in nuclear technology. France’s successful use of nuclear power is partly due to its emphasis on safety and regulatory compliance.

In conclusion, France's experience with nuclear power provides valuable insights into the role that this technology can play in an energy transition. By offering a stable, low-carbon, and reliable source of electricity, nuclear power complements renewable energy sources and supports overall energy security. As Germany and other countries navigate their energy transitions, France's example underscores the importance of a balanced energy mix, robust infrastructure, and effective public engagement in harnessing the benefits of nuclear power while addressing associated challenges, with industry voices such as Eon boss on nuclear debate underscoring the sensitivity of cross-border critiques.

 

Related News

View more

Finland Investigates Russian Ship After Electricity Cable Damage

Finland Shadow Fleet Cable Investigation details suspected Russia-linked sabotage of Baltic Sea undersea cables, AIS dark activity, and false-flag tactics threatening critical infrastructure, prompting NATO and EU vigilance against hybrid warfare across Northern Europe.

 

Key Points

Finland probes suspected sabotage of undersea cables by a Russia-linked vessel using flag of convenience and AIS off.

✅ Undersea cable damage in Baltic Sea sparks security alerts

✅ Suspected shadow fleet ship ran AIS dark under false flag

✅ NATO and EU boost maritime surveillance, critical infrastructure

 

In December 2024, Finland launched an investigation into a ship allegedly linked to Russia’s “shadow fleet” following a series of incidents involving damage to undersea cables. The investigation has raised significant concerns in Finland and across Europe, as it suggests possible sabotage or other intentional acts related to the disruption of vital communication and energy infrastructure in the Baltic Sea region. This article explores the key details of the investigation, the role of Russia’s shadow fleet, and the broader geopolitical implications of this event.

The "Shadow Fleet" and Its Role

The term “shadow fleet” refers to a collection of ships, often disguised or operating under false flags, that are believed to be part of Russia's covert maritime operations. These vessels are typically used for activities such as smuggling, surveillance, and potentially military operations, mirroring the covert hacker infrastructure documented by researchers in related domains. In recent years, the "shadow fleet" has been under increasing scrutiny due to its involvement in various clandestine actions, especially in regions close to NATO member countries and areas with sensitive infrastructure.

Russia’s "shadow fleet" operates in the shadows of regular international shipping, often difficult to track due to the use of deceptive practices like turning off automatic identification systems (AIS). This makes it difficult for authorities to monitor their movements and assess their true purpose, raising alarm bells when one of these ships is suspected of being involved in damaging vital infrastructure like undersea cables.

The Cable Damage Incident

The investigation was sparked after damage was discovered to an undersea cable in the Baltic Sea, a vital link for communication, data transmission, and energy supply between Finland and other parts of Europe. These undersea cables are crucial for everything from internet connections to energy grid stability, with recent Nordic grid constraints underscoring their importance, and any disruption to them can have serious consequences.

Finnish authorities reported that the damage appeared to be deliberate, raising suspicions of potential sabotage. The timing of the damage coincides with a period of heightened tensions between Russia and the West, particularly following the escalation of the war in Ukraine, with recent strikes on Ukraine's power grid highlighting the stakes, and ongoing geopolitical instability. This has led many to speculate that the damage to the cables could be part of a broader strategy to undermine European security and disrupt critical infrastructure.

Upon further investigation, a vessel that had been in the vicinity at the time of the damage was identified as potentially being part of Russia’s "shadow fleet." The ship had been operating under a false flag and had disabled its AIS system, making it challenging for authorities to track its movements. The vessel’s activities raised red flags, and Finnish authorities are now working closely with international partners to ascertain its involvement in the incident.

Geopolitical Implications

The damage to undersea cables and the suspected involvement of Russia’s "shadow fleet" have broader geopolitical implications, particularly in the context of Europe’s security landscape. Undersea cables are considered critical infrastructure, akin to electric utilities where intrusions into US control rooms have been documented, and any deliberate attack on them could be seen as an act of war or an attempt to destabilize regional security.

In the wake of the investigation, there has been increased concern about the vulnerability of Europe’s energy and communication networks, which are increasingly reliant on these undersea connections, and as the Baltics pursue grid synchronization with the EU to reduce dependencies, policymakers are reassessing resilience measures. The European Union, alongside NATO, has expressed growing alarm over potential threats to this infrastructure, especially as tensions with Russia continue to escalate.

The incident also highlights the growing risks associated with hybrid warfare tactics, which combine conventional military actions with cyberattacks, including the U.S. condemnation of power grid hacking as a cautionary example, sabotage, and disinformation campaigns. The targeting of undersea cables could be part of a broader strategy by Russia to disrupt Europe’s ability to coordinate and respond effectively, particularly in the context of ongoing sanctions and diplomatic pressure.

Furthermore, the suspected involvement of a "shadow fleet" ship raises questions about the transparency and accountability of maritime activities in the region. The use of vessels operating under false flags or without identification systems complicates efforts to monitor and regulate shipping in international waters. This has led to calls for stronger maritime security measures and greater cooperation between European countries to ensure the safety and integrity of critical infrastructure.

Finland’s Response and Ongoing Investigation

In response to the cable damage incident, Finnish authorities have mobilized a comprehensive investigation, seeking to determine the extent of the damage and whether the actions were deliberate or accidental. The Finnish government has called for increased vigilance and cooperation with international partners to identify and address potential threats to undersea infrastructure, drawing on Symantec's Dragonfly research for insights into hostile capabilities.

Finland, which shares a border with Russia and has been increasingly concerned about its security in the wake of Russia's invasion of Ukraine, has ramped up its defense posture. The damage to undersea cables serves as a stark reminder of the vulnerabilities that come with an interconnected global infrastructure, and Finland’s security services are likely to scrutinize the incident as part of their broader defense strategy.

Additionally, the incident is being closely monitored by NATO and the European Union, both of which have emphasized the importance of safeguarding critical infrastructure. As an EU member and NATO partner, Finland’s response to this situation could influence how Europe addresses similar challenges in the future.

The investigation into the damage to undersea cables in the Baltic Sea, allegedly linked to Russia’s "shadow fleet," has significant implications for European security. The use of covert operations, including the deployment of ships under false flags, underscores the growing threats to vital infrastructure in the region. With tensions between Russia and the West continuing to rise, the potential for future incidents targeting critical communication and energy networks is a pressing concern.

As Finland continues its investigation, the incident highlights the need for greater international cooperation and vigilance in safeguarding undersea cables and other critical infrastructure. In a world where hybrid warfare tactics are becoming increasingly common, ensuring the security of these vital connections will be crucial for maintaining stability in Europe. The outcome of this investigation may serve as a crucial case study in the ongoing efforts to protect infrastructure from emerging and unconventional threats.

 

Related News

View more

Blackout-Prone California Is Exporting Its Energy Policies To Western States, Electricity Will Become More Costly And Unreliable

California Blackouts expose grid reliability risks as PG&E deenergizes lines during high winds. Mandated solar and wind displace dispatchable natural gas, straining ISO load balancing, transmission maintenance, and battery storage planning amid escalating wildfire liability.

 

Key Points

California grid shutoffs stem from wildfire risk, renewables, and deferred transmission maintenance under mandates.

✅ PG&E deenergizes lines to reduce wildfire ignition during high winds.

✅ Mandated solar and wind displace dispatchable gas, raising balancing costs.

✅ Storage, reliability pricing, and grid upgrades are needed to stabilize supply.

 

California is again facing widespread blackouts this season. Politicians are scrambling to assign blame to Pacific Gas & Electric (PG&E) a heavily regulated utility that can only do what the politically appointed regulators say it can do. In recent years this has meant building a bunch of solar and wind projects, while decommissioning reliable sources of power and scrimping on power line maintenance and upgrades.

The blackouts are connected with the legal liability from old and improperly maintained power lines being blamed for sparking fires—in hopes that deenergizing the grid during high winds reduces the likelihood of fires. 

How did the land of Silicon Valley and Hollywood come to have developing world electricity?

California’s Democratic majority, from Gov. Gavin Newsom to the solidly progressive legislature, to the regulators they appoint, have demanded huge increases in renewable energy. Renewable electricity targets have been pushed up, and policymakers are weighing a revamp of electricity rates to clean the grid, with the state expected to reach a goal of 33% of its power from renewable sources, mostly solar and wind, by next year, and 60% of its electricity from renewables by 2030.

In 2018, 31% of the electricity Californians purchased at the retail level came from approved renewables. But when rooftop solar is added to the mix, about 34% of California’s electricity came from renewables in 2018. Solar photovoltaic (PV) systems installed “behind-the-meter” (BTM) displace utility-supplied generation, but still affect the grid at large, as electricity must be generated at the moment it is consumed. PV installations in California grew 20% from 2017 to 2018, benefiting from the state’s Self-Generation Incentive Program that offers hefty rebates through 2025, as well as a 30% federal tax credit.

Increasingly large amounts of periodic, renewable power comes at a price—the more there is, the more difficult it is to keep the power grid stable and energized. Since electricity must be consumed the instant it is generated, and because wind and solar produce what they will whenever they do, the rest of the grid’s power producers—mostly natural gas plants—have to make up any differences between supply and immediate demand. This load balancing is vital, because without it, the grid will crash and widespread blackouts will ensue.

California often produces a surplus of mandated solar and wind power, generated for 5 to 8 cents per kilowatt hour. This power displaces dispatchable power from natural gas, coal and nuclear plants, resulting in reliable power plants spending less time online and driving up electricity prices as the plants operate for fewer hours of the day. Subsidized and mandated solar power, along with a law passed in California in 2006 (SB 1638) that bans the renewal of coal-fired power contracts, has placed enormous economic pressure on the Western region’s coal power plants—among them, the nation’s largest, Navajo Generating Station. As these plants go off line, the Western power grid will become increasingly unstable. Eventually, the states that share their electric power in the Western Interconnect may have to act to either subsidize dispatchable power or place a value on reliability—something that was taken for granted in the growth of the America’s electrical system and its regulatory scheme.

California law regarding electricity explicitly states that “a violation of the Public Utilities Act is a crime” and that it is “…the intent of the Legislature to provide for the evolution of the ISO (California’s Independent System Operator—the entity that manages California’s grid) into a regional organization to promote the development of regional electricity transmission markets in the western states.” In other words, California expects to dictate how the Western grid operates.

One last note as to what drives much of California’s energy policy: politics. California State Senator Kevin de León (the author served with him in the State Assembly) drafted SB 350, the Clean Energy and Pollution Reduction Act. It became law in 2015. Sen. de León followed up with SB 100 in 2018, signed into law weeks before the 2018 election. SB 100 increased California’s renewable portfolio standard to 60% by 2030 and further requires all the state’s electricity to come from carbon-free sources by 2045, a capstone of the state’s climate policies that factor into the blackout debate.  

Sen. de León used his environmental credentials to burnish his run for the U.S. Senate against Sen. Dianne Feinstein, eventually capturing the endorsements of the California Democratic Party and billionaire environmentalist Tom Steyer, now running for president. Feinstein and de León advanced to the general in California’s jungle primary, where Feinstein won reelection 54.2% to 45.8%.

De León may have lost his race for the U.S. Senate, but his legacy will live on in increasingly unaffordable electricity and blackouts, not only in California, but in the rest of the Western United States—unless federal or state regulators begin to place a value on reliability. This could be done by requiring utility scale renewable power providers to guarantee dispatchable power, as policymakers try to avert a looming shortage of firm capacity, either through purchase agreements with thermal power plants or through the installation of giant and costly battery farms or other energy storage means.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.