More Con Ed customers having power cut off

By New York Times


Electrical Testing & Commissioning of Power Systems

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$599
Coupon Price:
$499
Reserve Your Seat Today
One of the most reliable indicators of tough times is how many people have their electricity turned off because they did not pay the bill.

According to the latest figures from Con Edison, times seem to be tough — predating the recent stock market turmoil.

The utility said that for the 12 months through September, 9,639 residential customers had their electricity turned off for nonpayment, 13 percent more than in the same period in 2007. The amount of those unpaid bills jumped faster — 28.3 percent — to $8.9 million, a reflection of the rise in energy prices.

During the same period, 1,600 nonresidential customers had their power turned off, an 8 percent increase.

The numbers provide a good indication that more people are having financial trouble, because electricity is so crucial to everyday life that families and businesses often do whatever they must to keep the lights on.

Con Ed jumps through a lot of hoops to warn customers that their electricity is in danger of being turned off. It sends as many as five warning letters over a 90-day period before turning a customerÂ’s electricity off, according to Michael Clendenin, a spokesman for Con Ed. The company also calls customers and will occasionally visit a residence or business.

During that time, Con Ed gives customers who are in arrears a chance to work out a payment plan, which, more often than not, heads off disaster.

“Most people who get their lights turned off are back on within a month, because they’ve entered a payment plan or made a payment,” Mr. Clendenin said.

Between January and the end of September, 342,073 residential customers were in arrears for more than 60 days, an 18 percent jump from the same period the year before.

All paying customers ultimately pick up the tab for those who stop paying for their electricity. Buried on monthly electric bills is a “merchant function charge,” which covers Con Ed’s administrative costs.

The item was shown separately starting in April, to help customers compare costs with those of other power providers. In May, the total charge was 0.5221 cents per kilowatt-hour used. Of that amount, 0.1148 cent is set aside to cover the uncollectible bills that delinquent customers leave behind.

Part of the money also goes to hiring collection agencies that try to track down such customers.

Wendell F. Holland, a partner at Saul Ewing, a law firm that represents utilities and energy companies, said that utilities usually could not collect 1 percent to 1.5 percent of their bills, an amount he called “the cost of doing business.”

Even when customers are far behind in paying the bills, utilities typically wait until after the winter is over to turn off power for nonpayment. The slowing economy, however, may lead to more customersÂ’ losing power.

“This problem is not just in New York State, but national,” said Mr. Holland, a former chairman of the Pennsylvania Public Utility Commission. “Unfortunately for all involved, the timing couldn’t be worse in light of the bank collapses.”

Some nonprofit groups help families who lose their power and heat. But they have been running short of funds as well, according to Gerald A. Norlander, the director of one such organization, the Public Utility Law Project.

“Catholic Charities, the Red Cross and other charities are not able to meet the need,” Mr. Norlander said. “Utility ‘fuel fund’ charities use customer donations matched by the utility, but they are a drop in the bucket, often exhausted, and some have very restrictive eligibility conditions, limiting aid to the elderly and disabled.”

Related News

Ontario Providing Support for Industrial and Commercial Electricity Consumers During COVID-19

Ontario Global Adjustment Deferral provides COVID-19 relief to industrial and commercial electricity consumers, holding GA charges at pre-COVID levels, aligning Class A and Class B rates, and deferring non-RPP costs from April to June 2020.

 

Key Points

An emergency measure that defers a portion of GA charges to stabilize electricity bills for non-RPP Class A/B consumers.

✅ Holds GA near pre-COVID levels at $115/MWh for Class B.

✅ Applies equal percentage relief to Class A customers.

✅ Deferred costs recovered over 12 months from Jan 2021.

 

Through an emergency order passed today, the Ontario government is taking steps to defer a portion of Global Adjustment (GA) charges for industrial and commercial electricity consumers that do not participate in the Regulated Price Plan for the period starting from April 2020, at a time when Toronto's growing electricity needs require careful planning. This initiative is intended to provide companies with temporary immediate relief on their monthly electricity bills, as utilities use AI to adapt to shifting electricity demands in April, May and June 2020. The government intends to keep this emergency order in place until May 31, 2020, and subsequent regulatory amendments would, if approved, provide for the deferral of these charges for June 2020 as well.

This relief will prevent a marked increase in Global Adjustment charges due to the low electricity demand caused by the COVID-19 outbreak. Without this emergency order, a small industrial or commercial consumer (i.e., Class B) could have seen bills increase by 15 per cent or more. This emergency order will hold GA rates in line with pre-COVID-19 levels, even as clean energy initiatives in British Columbia accelerate across the sector.

"Ontario's industrial and commercial electricity consumers are being impacted by COVID-19. They employ thousands of hardworking Ontarians, and we know this is a challenging time for them," said Greg Rickford, Minister of Energy, Northern Development and Mines. "This would provide immediate financial support for more than 50,000 companies when they need it most: as they do their part to stop the spread of COVID-19 and as they prepare to help get our economy moving again with Toronto preparing for a surge in electricity demand in the years ahead."

Quick Facts

  • The GA rate for smaller industrial and commercial consumers (i.e., Class B) has been set at $115 per megawatt-hour, which is roughly in line with the March 2020 value, alongside efforts to develop IoT security standards for electricity sector devices today. Large industrial and commercial consumers (i.e., Class A) will receive the same percentage reduction in GA charges as Class B consumers.
  • Subject to the approval of subsequent amendments, deferred costs would be recovered over a 12-month period beginning in January 2021, amid increasing exposure to harsh weather across Canadian grids.

 

Related News

View more

Texas lawmakers propose electricity market bailout after winter storm

Texas Electricity Market Bailout proposes securitization bonds and ERCOT-backed fees after Winter Storm Uri, spreading costs via ratepayer charges on power bills to stabilize generators, co-ops, and retailers and avert bankruptcies and investor flight.

 

Key Points

State plan to securitize storm debts via ERCOT fees, adding bill charges to stabilize Texas power firms.

✅ Securitization bonds finance unpaid ancillary services and energy costs

✅ ERCOT fee spreads Winter Storm Uri debts across ratepayers statewide

✅ Aims to prevent bankruptcies, preserve grid reliability, reassure investors

 

An approximately $2.5 billion plan to bail out Texas’ distressed electricity market from the financial crisis caused by Winter Storm Uri in February has been approved by the Texas House.

The legislation would impose a fee — likely for the next decade or longer — on electricity companies, which would then get passed on to residential and business customers in their power bills, even as some utilities waived certain fees earlier in the crisis.

House lawmakers sent House Bill 4492 to the Senate on Thursday after a 129-15 vote. A similar bill is advancing in the Senate.

Some of the state’s electricity providers and generators are financially underwater in the aftermath of the February power outages, which left millions without power and killed more than 100 people. Electricity companies had to buy whatever power was available at the maximum rate allowed by Texas regulations — $9,000 per megawatt hour — during the week of the storm (the average price for power in 2020 was $22 per megawatt hour). Natural gas fuel prices also spiked more than 700% during the storm.

Several companies are nearing default on their bills to the Electric Reliability Council of Texas, which manages the Texas power grid that covers most of the state and facilitates financial transactions in it.

Rural electric cooperatives were especially hard hit; Brazos Electric Power Cooperative, which supplies electricity to 1.5 million customers, filed for bankruptcy citing a $1.8 billion debt to ERCOT.

State Rep. Chris Paddie, R-Marshall, the bill’s author, said a second bailout bill will be necessary during the current legislative session for severely distressed electric cooperatives.

“This is a financial crisis, and it’s a big one,” James Schaefer, a senior managing director at Guggenheim Partners, an investment bank, told lawmakers at a House State Affairs Committee hearing in early April. He warned that more bankruptcies would cause higher costs to customers and hurt the state’s image in the eyes of investors.

“You’ve got to free the system,” Schaefer said. “It’s horrible that a bunch of folks have to pay, but it’s a system-wide failure. If you let a bunch of folks crash, it’s not a good look for your state.”

If approved by the Senate and Gov. Greg Abbott, a newly-created Texas Electric Securitization Corp. would use the money raised from the fees for bonds to help pay the companies’ debts, including costs for ancillary services, a financial product that helps ensure power is continuously generated and improve electricity reliability across the grid.

Paddie told his colleagues Wednesday that he could not yet estimate how long the new fee would be imposed, but during committee hearings lawmakers estimated it’s likely to be at least a decade. Several other bills to spread out the costs of the winter storm and consider market reforms are also moving through the Legislature.

ERCOT’s independent market monitor recommended in March that energy sold during that period be repriced at a lower rate, which would have allowed ERCOT to claw back about $4.2 billion in payments to power generators, but the Public Utility Commission declined to do so, even as a court ruling on plant obligations in emergencies drew scrutiny among market participants.

Instead, lawmakers are pushing for bailouts that several energy experts have said is needed, both to ensure distressed companies don’t pass enormous costs on to their customers and to prevent electricity investors and companies from leaving the state if it’s viewed as too risky to continue doing business.

Becky Klein, an energy consultant in Austin and former chair of the Public Utility Commission who played a key role in de-regulating Texas’ electricity market two decades ago, said during a retail electricity panel hosted by Integrate that legislation is necessary to provide “some kind of backstop during a crazy market crisis like this to show the financial market that we’re willing to provide some relief.”

Still, some lawmakers are concerned with how they will win public support, including potential voter-approved funding measures, for bills to bail out the state’s electricity market.

“I have to go back to Laredo and say, ‘I know you didn’t have electricity for several days, but now I’m going to make you pay a little more for the next 20 years,’” state Rep. Richard Peña Raymond, D-Laredo, said during an early April discussion on the plan in the House State Affairs Committee. He said he voted for the bill because it’s in the best interest of the state.

Paddie, during the same committee hearing, acknowledged that “none of us want to increase fees or taxes.” However, he said, “We have to deal with the reality set before us.”

 

Related News

View more

Extreme Heat Boosts U.S. Electricity Bills

Extreme Heat and Rising Electricity Bills amplify energy costs as climate change drives air conditioning demand, stressing the power grid and energy affordability, with low income households facing outsized burdens during prolonged heat waves.

 

Key Points

Heat waves from climate change raise AC demand, driving up electricity costs and straining energy affordability.

✅ More AC use spikes electricity demand during heat waves

✅ Low income households face higher energy burden

✅ Grid reliability risks rise with peak cooling loads

 

Extreme heat waves are not only straining public health systems but also having a significant impact on household finances, particularly through rising electricity bills. According to a recent AP-NORC poll, a growing number of Americans are feeling the financial pinch as soaring temperatures drive up the cost of cooling their homes. This development underscores the broader implications of climate change and its effects on everyday life.

The AP-NORC poll highlights that a majority of Americans are experiencing increased electricity costs as a direct result of extreme heat. As temperatures climb, so does the demand for air conditioning and other cooling systems. This increased energy consumption is contributing to higher utility bills, which can put additional strain on household budgets.

Extreme heat waves have become more frequent and intense due to climate change, which has led to a greater reliance on air conditioning to maintain comfortable indoor environments. Air conditioners and fans work harder during heat waves, and wasteful air conditioning can add around $200 to summer bills, consuming more electricity and consequently driving up energy bills. For many households, particularly those with lower incomes, these increased costs can be a significant burden.

The poll reveals that the impact of rising electricity bills is widespread, affecting a diverse range of Americans. Households across different income levels and geographic regions are feeling the heat, though the extent of the financial strain can vary. Lower-income households are particularly vulnerable, as they often have less flexibility in their budgets to absorb higher utility costs. For these families, the choice between cooling their homes and other essential expenses can be a difficult one.

In addition to financial strain, the poll highlights concerns about energy affordability and access. As electricity bills rise, some Americans may face challenges in paying their bills, leading to potential utility shut-offs or the need to make difficult choices between cooling and other necessities. This situation is exacerbated by the fact that many utility companies do not offer sufficient assistance or relief programs to help low-income households manage their energy costs.

The increasing frequency of extreme heat events and the resulting spike in electricity consumption also have broader implications for the energy infrastructure. Higher demand for electricity can strain power grids, as seen when California narrowly avoided blackouts during extreme heat, potentially leading to outages or reduced reliability. Utilities and energy providers may need to invest in infrastructure upgrades and maintenance to ensure that the grid can handle the increased load during heat waves.

Climate change is a key driver of the rising temperatures that contribute to higher electricity bills. As global temperatures continue to rise, extreme heat events are expected to become more common and severe, and experts warn the US electric grid was not designed to withstand these impacts. This trend underscores the need for comprehensive strategies to address both the causes and consequences of climate change. Efforts to reduce greenhouse gas emissions, improve energy efficiency, and invest in renewable energy sources are critical components of a broader climate action plan.

Energy efficiency measures can play a significant role in mitigating the impact of extreme heat on electricity bills. Upgrading to more efficient cooling systems, improving home insulation, and adopting smart thermostats can help reduce energy consumption and lower utility costs. Additionally, utility companies and government programs can offer incentives and rebates, including ways to tap new funding that help encourage energy-saving practices and support households in managing their energy use.

The poll also suggests that there is a growing awareness among Americans about the connection between climate change and rising energy costs. Many people are becoming more informed about the ways in which extreme weather events and rising temperatures impact their daily lives. This increased awareness can drive demand for policy changes and support for initiatives aimed at addressing climate change and improving energy efficiency, with many willing to contribute income to climate efforts, about the connection between climate change and rising energy costs.

In response to the rising costs and the impact of extreme heat, there are calls for policy interventions and support programs to help manage energy affordability. Proposals include expanding assistance programs for low-income households, investing in infrastructure improvements, and promoting energy efficiency initiatives alongside steps to make electricity systems more resilient to climate risks. By addressing these issues, policymakers can help alleviate the financial burden on households and support a more resilient and sustainable energy system.

Debates over policy impacts on electricity prices continue; in Alberta, federal policies are blamed by some for higher rates, illustrating how regulation can affect affordability.

In conclusion, the AP-NORC poll highlights the growing financial impact of extreme heat on American households, with rising electricity bills being a significant concern for many. The increased demand for cooling during heat waves is straining household budgets and raising broader questions about energy affordability and infrastructure resilience. Addressing these challenges requires a multifaceted approach, including efforts to combat climate change, improve energy efficiency, and provide support for those most affected by rising energy costs. As extreme heat events become more common, finding solutions to manage their impact will be crucial for both individual households and the broader energy system.

 

Related News

View more

U.S Bans Russian Uranium to Bolster Domestic Industry

U.S. Russian Uranium Import Ban reshapes nuclear fuel supply, bolstering energy security, domestic enrichment, and sanctions policy while diversifying reactor-grade uranium sources and supply chains through allies, waivers, and funding to sustain utilities and reliability.

 

Key Points

A U.S. law halting Russian uranium imports to boost energy security diversify nuclear fuel and revive U.S. enrichment.

✅ Cuts Russian revenue; reduces geopolitical risk.

✅ Funds U.S. enrichment; supports reactor fuel supply.

✅ Enables waivers to prevent utility shutdowns.

 

In a move aimed at reducing reliance on Russia and fostering domestic energy security for the long term, the United States has banned imports of Russian uranium, a critical component of nuclear fuel. This decision, signed into law by President Biden in May 2024, marks a significant shift in the U.S. nuclear fuel supply chain and has far-reaching economic and geopolitical implications.

For decades, Russia has been a major supplier of enriched uranium, a processed form of uranium used to power nuclear reactors. The U.S. relies on Russia for roughly a quarter of its enriched uranium needs, feeding the nation's network of 94 nuclear reactors operated by utilities which generate nearly 20% of the country's electricity. This dependence has come under scrutiny in recent years, particularly following Russia's invasion of Ukraine.

The ban on Russian uranium is a multifaceted response. First and foremost, it aims to cripple a key revenue stream for the Russian government. Uranium exports are a significant source of income for Russia, and by severing this economic tie, the U.S. hopes to weaken Russia's financial capacity to wage war.

Second, the ban serves as a national energy security measure. Relying on a potentially hostile nation for such a critical resource creates vulnerabilities. The possibility of Russia disrupting uranium supplies, either through political pressure or in the event of a wider conflict, is a major concern. Diversifying the U.S. nuclear fuel supply chain mitigates this risk.

Third, the ban is intended to revitalize the domestic uranium mining and enrichment industry, building on earlier initiatives such as Trump's uranium order announced previously. The U.S. has historically been a major uranium producer, but environmental concerns and competition from cheaper foreign sources led to a decline in domestic production. The ban, coupled with $2.7 billion in federal funding allocated to expand domestic uranium enrichment capacity, aims to reverse this trend.

The transition away from Russian uranium won't be immediate. The law includes a grace period until mid-August 2024, and waivers can be granted to utilities facing potential shutdowns if alternative suppliers aren't readily available. Finding new sources of enriched uranium will require forging partnerships with other uranium-producing nations like Kazakhstan, Canada on minerals cooperation, and Australia.

The long-term success of this strategy hinges on several factors. First, successfully ramping up domestic uranium production will require overcoming regulatory hurdles and addressing environmental concerns, alongside nuclear innovation to modernize the fuel cycle. Second, securing reliable alternative suppliers at competitive prices is crucial, and supportive policy frameworks such as the Nuclear Innovation Act now in law can help. Finally, ensuring the continued safe and efficient operation of existing nuclear reactors is paramount.

The ban on Russian uranium is a bold move with significant economic and geopolitical implications. While challenges lie ahead, the potential benefits of a more secure and domestically sourced nuclear fuel supply chain are undeniable. The success of this initiative will be closely watched not only by the U.S. but also by other nations seeking to lessen their dependence on Russia for critical resources.

 

Related News

View more

US power coalition demands action to deal with Coronavirus

Renewable Energy Tax Incentive Extensions urged by US trade groups to offset COVID-19 supply chain delays, tax equity shortages, and financing risks, enabling direct pay, PTC and ITC qualification, and standalone energy storage credits.

 

Key Points

Policy measures that extend and monetize clean energy credits to counter COVID-19 disruptions and financing shortfalls.

✅ Extend start construction and safe harbor deadlines

✅ Enable direct pay to offset reduced tax equity

✅ Add a standalone energy storage credit

 

Renewable energy and other trade bodies in the US are calling on Capitol Hill to extend provision of tax incentives to help the sector “surmount the impacts” of the COVID-19 crisis facing clean energy.

In a signed joint letter, the American Council on Renewable Energy (ACORE), American Wind Energy Association (AWEA), Energy Storage Association (ESA), National Hydropower Association (NHA), Renewable Energy Buyers Alliance (REBA), and the Solar Energy Industries Association (SEIA) stated: “With over $50bn in annual investment over each of the past five years, the clean energy sector is one of the nation’s most important economic drivers. But that growth is placed at risk by a range of COVID-19 related impacts”.

These include “supply chain disruptions that have the potential to delay utility solar construction timetables and undermine the ability of wind, solar and hydropower developers to qualify for time-sensitive tax credits, and a sudden reduction in the availability of tax equity, which is crucial to monetising tax credits and financing clean energy projects of all types.”
The letter goes onto state: “Like all sectors of our economy the renewable and clean grid industry – including developers, manufacturers, construction workers, electric utilities, investors and major corporate consumers of renewable power – needs stability.

“The current uncertainty about the ability to qualify for and monetise tax incentives will have real and substantial negative impacts to the entire economy.

On behalf of the thousands of companies that participate in America’s renewable and clean energy economy, the coalition of organisations is requesting the US Government, echoing Senate calls to support clean energy, take three “critical” steps to address pandemic-related disruptions.

The first is an extension of start construction and safe harbour deadlines to ensure that renewable projects can qualify for renewable tax credits amid the Solar ITC extension debate and despite delays associated with supply chain disruptions.

The second is the implementation of provisions that will allow renewable tax credits to be available for direct pay to facilitate their monetisation, supporting U.S. solar and wind growth in the face of reduced availability of tax equity.

Thirdly, the signatories have requested the enactment of a direct pay tax credit for standalone energy storage to foster renewable growth as the industry sets sights on market majority and help secure a more resilient grid.

 

Related News

View more

Electricity Grids Can Handle Electric Vehicles Easily - They Just Need Proper Management

EV Grid Capacity Management shows how smart charging, load balancing, and off-peak pricing align with utility demand response, DC fast charging networks, and renewable integration to keep national electricity infrastructure reliable as EV adoption scales

 

Key Points

EV Grid Capacity Management schedules charging and balances load to keep EV demand within utility capacity.

✅ Off-peak pricing and time-of-use tariffs shift charging demand.

✅ Smart chargers enable demand response and local load balancing.

✅ Gradual EV adoption allows utilities to plan upgrades efficiently.

 

One of the most frequent concerns you will see from electric vehicle haters is that the electricity grid can’t possibly cope with all cars becoming EVs, or that EVs will crash the grid entirely. However, they haven’t done the math properly. The grids in most developed nations will be just fine, so long as the demand is properly management. Here’s how.

The biggest mistake the social media keyboard warriors make is the very strange assumption that all cars could be charging at once. In the UK, there are currently 32,697,408 cars according to the UK Department of Transport. The UK national grid had a capacity of 75.8GW in 2020. If all the cars in the UK were EVs and charging at the same time at 7kW (the typical home charger rate), they would need 229GW – three times the UK grid capacity. If they were all charging at 50kW (a common public DC charger rate), they would need 1.6TW – 21.5 times the UK grid capacity. That sounds unworkable, and this is usually the kind of thinking behind those who claim the UK grid can't cope with EVs.

What they don’t seem to realize is that the chances of every single car charging all at once are infinitesimally low. Their arguments seem to assume that nobody ever drives their car, and just charges it all the time. If you look at averages, the absurdity of this position becomes particularly clear. The distance each UK car travels per year has been slowly dropping, and was 7,400 miles on average in 2019, again according to the UK Department of Transport. An EV will do somewhere between 2.5 and 4.5 miles per kWh on average, so let’s go in the middle and say 3.5 miles. In other words, each car will consume an average of 2,114kWh per year. Multiply that by the number of cars, and you get 69.1TWh. But the UK national grid produced 323TWh of power in 2019, so that is only 21.4% of the energy it produced for the year. Before you argue that’s still a problem, the UK grid produced 402TWh in 2005, which is more than the 2019 figure plus charging all the EVs in the UK put together. The capacity is there, and energy storage can help manage EV-driven peaks as well.

Let’s do the same calculation for the USA, where an EV boom is about to begin and planning matters. In 2020, there were 286.9 million cars registered in America. In 2020, while the US grid had 1,117.5TW of utility electricity capacity and 27.7GW of solar, according to the US Energy Information Administration. If all the cars were EVs charging at 7kW, they would need 2,008.3TW – nearly twice the grid capacity. If they charged at 50kW, they would need 14,345TW – 12.8 times the capacity.

However, in 2020, the US grid generated 4,007TWh of electricity. Americans drive further on average than Brits – 13,500 miles per year, according to the US Department of Transport’s Federal Highway Administration. That means an American car, if it were an EV, would need 3,857kWh per year, assuming the average efficiency figures above. If all US cars were EVs, they would need a total of 1,106.6TWh, which is 27.6% of what the American grid produced in 2020. US electricity consumption hasn’t shrunk in the same way since 2005 as it has in the UK, but it is clearly not unfeasible for all American cars to be EVs. The US grid could cope too, even as state power grids face challenges during the transition.

After all, the transition to electric isn’t going to happen overnight. The sales of EVs are growing fast, with for example more plug-ins sold in the UK in 2021 so far than the whole of the previous decade (2010-19) put together. Battery-electric vehicles are closing in on 10% of the market in the UK, and they were already 77.5% of new cars sold in Norway in September 2021. But that is new cars, leaving the vast majority of cars on the road fossil fuel powered. A gradual introduction is essential, too, because an overnight switchover would require a massive ramp up in charge point installation, particularly devices for people who don’t have the luxury of home charging. This will require considerable investment, but could be served by lots of chargers on street lamps, which allegedly only cost £1,000 ($1,300) each to install, usually with no need for extra wiring.

This would be a perfectly viable way to provide charging for most people. For example, as I write this article, my own EV is attached to a lamppost down the street from my house. It is receiving 5.5kW costing 24p (32 cents) per kWh through SimpleSocket, a service run by Ubitricity (now owned by Shell) and installed by my local London council, Barnet. I plugged in at 11am and by 7.30pm, my car (which was on about 28% when I started) will have around 275 miles of range – enough for a couple more weeks. It will have cost me around £12 ($16) – way less than a tank of fossil fuel. It was a super-easy process involving the scanning of a QR code and entering of a credit card, very similar to many parking systems nowadays. If most lampposts had one of these charging plugs, not having off-street parking would be no problem at all for owning an EV.

With most EVs having a range of at least 200 miles these days, and the average mileage per day being 20 miles in the UK (the 7,400-mile annual figure divided by 365 days) or 37 miles in the USA, EVs won’t need charging more than once a week or even every week or two. On average, therefore, the grids in most developed nations will be fine. The important consideration is to balance the load, because if too many EVs are charging at once, there could be a problem, and some regions like California are looking to EVs for grid stability as part of the solution. This will be a matter of incentivizing charging during off-peak times such as at night, or making peak charging more expensive. It might also be necessary to have the option to reduce charging power rates locally, while providing the ability to prioritize where necessary – such as emergency services workers. But the problem is one of logistics, not impossibility.

There will be grids around the world that are not in such a good place for an EV revolution, at least not yet, and some critics argue that policies like Canada's 2035 EV mandate are unrealistic. But to argue that widespread EV adoption will be an insurmountable catastrophe for electricity supply in developed nations is just plain wrong. So long as the supply is managed correctly to make use of spare capacity when it’s available as much as possible, the grids will cope just fine.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.