St. Albert touts green goals with three new electric buses


St. Albert new electric buses

CSA Z462 Arc Flash Training - Electrical Safety Essentials

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 6 hours Instructor-led
  • Group Training Available
Regular Price:
$249
Coupon Price:
$199
Reserve Your Seat Today

St. Albert electric buses debut as zero-emission, quiet public transit, featuring BYD technology, long-range batteries, and charging stations, serving Edmonton routes while advancing sustainable transportation goals and a future fleet expansion.

 

Key Points

They are zero-emission BYD transit buses that cut noise and air pollution, with long-range batteries and city charging.

✅ Up to 250-280 km range per charge

✅ Quiet, zero-emission operations reduce urban pollution

✅ Backed by provincial GreenTRIP funding and BYD tech

 

The city of St. Albert is going green — both literally and esthetically — with three electric buses on routes in and around the city this week.

"They're virtually silent," Wes Brodhead, chair of the Capital Region Board transit committee and a St. Albert city councillor, said. "This, as opposed to the diesel buses and the roar that accompanies them as they drive down the street."

You may not hear them coming but you'll definitely see them, as electric school buses in B.C. hit the road as well.

The 35-foot electric buses are painted bright green to represent the city's goal of adopting sustainable transportation.

"There's no noise pollution, there's no air pollution, and it just kind of fit with the whole theme of the city," said St. Albert Transit director Kevin Bamber.

'The conversation around the conference was not if but when the industry will fully embrace electrification,' - Wes Brodhead, St. Albert city councillor

The buses cost about $970,000 each. Adding in the required infrastructure, including charging stations, the project cost a total of $3.1 million, with two-thirds of the funding coming from the provincial government's Green Transit Incentives Program. 

The electric buses are estimated to go between 250 and 280 kilometres on a single charge.

"That would mean any of the routes that we currently have through St. Albert or into Edmonton, an electric bus could do the morning route, come back, park in the afternoon and go back out and do the afternoon route without a charge," Bamber said. 

St. Albert councillor Wes Brodhead envisions having a full fleet of 60 electric buses in years to come, a scale informed by examples like the TTC's electric bus fleet operating in North America. (Supplied)

Brodhead went to an international transit conference in Montreal, where STM electric buses have begun rolling out and he said manufacturers presented various electric bus designs. 

"The conversation around the conference was not if but when the industry will fully embrace electrification," Brodhead said.

The vehicles were built in California by BYD Ltd., one of only two companies making the long-endurance electric buses.

The city has ordered four more of the buses and hopes to be running all seven by the end of the year, as battery-electric buses in Metro Vancouver continue to hit the roads nationwide.

Eventually, Brodhead envisions having a full fleet of 60 electric buses in St. Albert.

Edmonton is expected to operate as many as 40 electric buses, and while city staff are still in the planning stages, Edmonton's first electric bus has already hit city streets.

 

Related News

Related News

How Hedge Funds May Be Undermining the Electric Car Boom

Cobalt Supply Chain for EV Batteries faces shortages as lithium-ion demand surges; Tesla gigafactories, ethical sourcing, Idaho cobalt mining, and DRC risks intensify pricing, logistics, and procurement challenges for manufacturers and investors.

 

Key Points

A network supplying cobalt for lithium-ion cathodes, strained by EV demand, ethical sourcing pressures, and DRC risk.

✅ EV growth outpaces cobalt supply, widening deficits

✅ DRC reliance drives ESG scrutiny and sourcing shifts

✅ Idaho projects and stockpiling reshape U.S. supply

 

A perfect storm is brewing in the 21st Century battery market.

More specifically, it's about what goes into those batteries - and it's not just lithium.

The other element that makes up 35 percent of the lithium-ion batteries mass produced at Tesla's Nevada gigafactory and at a dozen of other behemoths slated to come on line, is cobalt. And it's already in dramatically short supply. A part of the answer to the cobalt deficit is 100 percent American, and this little-known miner is sitting on a prime Idaho cobalt project that is one of only two that looks likely to come online in the U.S. and it's right in Tesla's backyard.

 

High-Energy Batteries Need More Cobalt Than Lithium 

If you've been focusing your investment on lithium supplies lately you've been missing the even bigger story. EV batteries need about 200 grams of refined cobalt per kilowatt of battery capacity. Power walls need more than twice that. Between March 2016 and April 2017, the cost of the cobalt in that mix nearly tripled. But it isn't just the price that's got manufacturers worried. It's the shortage of availability. Keeping gigafactories stocked with enough cobalt to run at capacity is the challenge of the decade.

Tesla, now with a $50-billion market cap, launched a $5-billion battery gigafactory in Nevada in January. By the end of 2017, it will have doubled the entire global battery production capacity. By next year, it will be producing more batteries than the rest of the world combined.

It is estimated that Tesla's gigafactory alone will need anywhere between 7,000 and 17,500 tonnes of refined cobalt every year.

Tesla used to buy its finished battery cells from Panasonic, which in turn got its processed cathode powders from a Japanese company, Sumitomo was processing its own cobalt in the Philippines. However, that facility is already running at capacity and couldn't even begin to handle Tesla's gigafactory demand. In other words, Tesla's supply chain is no longer secure. And that's just Tesla.

The EV market is fifteen times larger than it was five years ago. The market has experienced a comppound annual growth rate of over 72 percent from 2011-2016, with new sources like Alberta's lithium-laced oil fields drawing investment alongside cobalt. This year, analysts expect it to gain another 25-26 percent. Last year, global EV production grew 41 percent, and sales are up more than 60 per cent year to year.

In addition,the Iron Creek project isn't a new exploration property. It has already seen major historic exploratory work, including 30,000 feet of diamond drilling. Iron Creek has historic (non 43-101 compliant) indications of 1.3 million tons grading 0.59 percent of cobalt with encouraging indications of up to 10 million tons. The 'closeology' is also brilliant. It's right next to the only advanced cobalt project in the U.S., which has a resource of 3 million-plus tonnes of cobalt.

As the battery market hits fever pitch and the supply-chain bottlenecks become unbearable, homegrown exploration is the key-first-movers and first investors will be the biggest beneficiaries.

 

A Very Precarious Supply Chain 

Supply is already in deficit, and we're also looking at an anticipated 500 percent increase in demand, making EV battery recycling an increasingly important complement to mining. Analysts at Macquarie Research project deficits of 885 tonnes of this resource next year, 3,205 in 2019 and 5,340 in 2020.

Not only is demand set to wildly outstrip supply very soon, but current supply (50 percent) comes primarily from the Democratic Republic of Congo (DRC). Buyers are coming under increasing pressure to look elsewhere for cobalt as the U.S. moves to work with allies to secure EV metals through diversified supply chains. The DRC has a horrendous record when it comes to labor practices and human rights.

Ask Apple Inc.  The tech giant recently announced it would stop buying unethical DRC cobalt for its iPhones - and as such, it has been forced to look for new suppliers.

The perfect storm continues: Some 95 percent of the world's cobalt is produced as a byproduct of copper and nickel mining, where concerns about ethical sourcing have put a spotlight on Canada's role in sustainable nickel practices worldwide. This means that cobalt supply is dependent on copper and nickel mining, and if those commodities are uneconomic to mine, there are no cobalt by-product results.

Not only is US Cobalt one of the first movers on the All-American ethical cobalt scene, but it's also financed to advance its Idaho Cobalt Belt project, and hopes to prove up 10 million tonnes of cobalt resource.

 

The Dream Team Behind Pure American Cobalt 

The CEO of US Cobalt, Wayne Tisdale, is a legend in spotting emerging trends with impeccable timing and has created billions in shareholder value. He's already done it with uranium, gold and oil and gas, and his most recent homerun was in lithium, with Pure Energy. When it launched in 2012, lithium was selling for about $5,000 per tonne. Within 18 months, it had increased 450 percent.

His next bet is on cobalt.

Tisdale and his team at Intrepid Financial have, in recent years, created $2.7 billion in value by building and financing 5 companies in completely different industries:

  • Rainy River (gold) was worth $1.2 billion at its peak
  • Xemplar (uranium) hit $1 billion at its peak
  • Ryland Oil (oil and gas) sold for $114 million
  • Webtech Wireless (tech) was worth $300 million at its peak
  • Pure Energy (lithium) is worth $65 million (and counting)

The bottom line? There is no other commodity on the market right now that we need more.

Just watch what the hedge funds are doing with cobalt because it's unprecedented. The run on physical cobalt started in February in the least expected corner: Major hedge funds started buying up physical cobalt and hoarding it in order to gain exposure, resulting in a major supply shortage for the blue metal. Swiss-based Pala Investments and China's Shanghai Chaos have already hoarded 17 percent of last year's global production. At today's prices that's worth around $280 million. At tomorrow's prices, it will be worth a lot more.

When hedge funds start stockpiling physical cobalt, it sends its traditional buyers into a panic to secure new shipments. Since November, cobalt prices have rallied more than 100 percent, and this is only the beginning. As the cobalt supply problem grows, and EV giants and gigafactories continue to increase demand, a home-grown solution is at hand. As a first principle of investing, where there is a supply problem, there is a massive opportunity for early investors.

 

Related News

View more

Premier warns NDP, Greens that delaying Site C dam could cost $600M

Site C Project Delay raises BC Hydro costs as Christy Clark warns $600 million impact; NDP and Greens seek BCUC review of the hydroelectric dam on the Peace River, challenging evictions and construction contracts.

 

Key Points

A potential slowdown of B.C.'s Site C dam, risking $600M overruns, evictions, and schedule delays pending a BCUC review.

✅ Clark warns $600M cost if river diversion slips a year

✅ NDP-Green seek BCUC review; request to pause contracts, evictions

✅ Peace River hydro dam; schedule critical to budget, ratepayers

 

Premier Christy Clark is warning the NDP and Greens that delaying work on the Site C project in northeast British Columbia could cost taxpayers $600 million.

NDP Leader John Horgan wrote to BC Hydro last week asking it to suspend the evictions of two homeowners and urging it not to sign any new contracts on the $8.6-billion hydroelectric dam until a new government has gained the confidence of the legislature.

But Clark says in letters sent to Horgan and Green Leader Andrew Weaver on Tuesday that the evictions are necessary as part of a road and bridge construction project that are needed to divert a river in September 2019.

Any delay could postpone the diversion by a year and cost taxpayers hundreds of millions of dollars, she says.

“With a project of this size and scale, keeping to a tight schedule is critical to delivering a completed project on time and on budget,” she says. “The requests contained in your letter are not without consequences to the construction schedule and ultimately have financial ramifications to ratepayers.”

The premier has asked Horgan and Weaver to reply by Saturday on whether they still want to put the evictions on hold.

She also asks whether they want the government to issue a “tools down” request to BC Hydro on other decisions that she says are essential to maintaining the budget and construction schedule.

An agreement between the NDP and Green party was signed last week that would allow the New Democrats to form a minority government, ousting Clark's Liberals.

The agreement includes a promise to refer the Site C project to the B.C. Utilities Commission to determine its economic viability.

Some analysts argue that better B.C.-Alberta power integration could improve climate outcomes and market flexibility.

But Clark says the project is likely to progress past the “point of no return” before a review can be completed.

Clark did not define what she meant by “point of no return,” nor did she explain how she reached the $600-million figure. Her press secretary Stephen Smart referred questions to BC Hydro, which did not immediately respond.

During prolonged drought conditions, BC Hydro has had to adapt power generation across the province, affecting planning assumptions.

In a written response to Clark, Weaver says before he can comment on her assertions he requires access to supporting evidence, including signed contracts, the project schedule and potential alternative project timelines.

“Please let me express my disappointment in how your government is choosing to proceed with this project,” he says.

“Your government is turning a significant capital project that potentially poses massive economic risks to British Columbians into a political debate rather than one informed by evidence and supported by independent analysis.”

The dam will be the third on the Peace River, flooding an 83-kilometre stretch of valley, and local First Nations, landowners and farmers have fiercely opposed the project.

Construction began two years ago.

A report written by University of British Columbia researchers in April argued it wasn't too late to press pause on the project and that the electricity produced by Site C won't be fully required for nearly a decade after it's complete.

 

Related News

View more

Montreal's first STM electric buses roll out

STM Electric Buses Montreal launch a zero-emission pilot with rapid charging stations on the 36 Monk line from Angrignon to Square Victoria, winter-tested for reliability and aligned with STM's 2025 fully electric fleet plan.

 

Key Points

STM's pilot deploys zero-emission buses with charging on the 36 Monk line, aiming for a fully electric fleet by 2025.

✅ 36 Monk route: Angrignon to Square Victoria with rapid charging

✅ Winter-tested performance; 15-25 km range per charge

✅ Quebec-built: motors Boucherville; buses Saint-Eustache

 

The first of three STM electric buses are rolling in Montreal, similar to initiatives with Vancouver electric buses elsewhere in Canada today.

The test batch is part of the city's plan to have a fully electric fleet by 2025, mirroring efforts such as St. Albert's electric buses in Alberta as well.

Over the next few weeks, one bus at a time will be put into circulation along the 36 Monk line, a rollout approach similar to Edmonton's first electric bus efforts in that city, going from Angrignon Metro station to Square Victoria Metro station. 

Rapid charging stations have been set up at both locations, a model seen in TTC's battery-electric rollout to support operations, so that batteries can be charged during the day between routes. The buses are also going to be fully charged at regular charging stations overnight.

Each bus can run from 15 to 25 kilometres on a single charge. The Monk line was chosen in part for its length, around 11 kilometres.

The STM has been testing the electric buses to make sure they can stand up to Montreal's harsh winters, drawing on lessons from peers such as the TTC electric bus fleet in Toronto, and now they are ready to take on passengers.

 

Keeping it local

The motors were designed in Boucherville, and the buses themselves were built in Saint-Eustache.

No timeline has been set for when the STM will be ready to roll out the whole fleet, but Montreal Mayor Denis Coderre, who was on hand at Tuesday's unveiling, told reporters he has confidence in the $11.9-million program.

"We start with three. Trust me, there will be more." said Coderre.

 

Related News

View more

More than a third of Irish electricity to be green within four years

Ireland Wind and Solar Share 2022 highlights IEA projections of over 33% electricity generation from renewables, with variable renewable energy growth, capacity targets, EU policy shifts, and investments accelerating wind and solar deployment.

 

Key Points

IEA forecasts wind and solar to exceed 33% of Ireland's electricity by 2022, second in variable renewables after Denmark.

✅ IEA expects Ireland to surpass 33% wind and solar by 2022

✅ Denmark leads at ~70%; Germany and UK exceed 25%

✅ Investments and capacity targets drive renewable growth

 

The share of wind and solar in total electricity generation in Ireland is expected to exceed 33pc by 2022, according to the 'Renewables 2017' report from the International Energy Agency (IEA).

Among the findings, the report says that Denmark is on course to be the world leader in the variable renewable energy sector, with 70pc of its electricity generation expected to come from wind and solar renewables by 2022.

The Nordic country will be followed by Ireland, Germany and the UK, all of which are expected see their share of wind and solar energy in total electricity generation exceed 25pc, according to the IEA report.

In a move to increase the level of wind generation in Ireland, the Government-controlled Ireland Strategic Investment Fund (Isif) teamed up with German solar and wind park operator Capital Stage in January to invest €140m in 20 solar parks in Ireland.

#google#

The parks are being developed by Dublin-based Power Capital, and it marks the first time that Isif has committed to financing solar park developments in this country.

Globally, renewables accounted for almost two-thirds of net new power capacity, with nearly 165 gigawatts (GW) coming online in 2016.

This was a record year that was largely driven by a booming solar market in China and around the world.

In 2016 solar capacity around the world grew by 50pc, reaching over 74 GW, with China's solar PV accounting for almost half of this expansion. In another first, solar energy additions rose faster than any other fuel, surpassing the net growth in coal, the IEA report found.

China alone is responsible for over two-fifths of global renewable capacity growth, which, according to the IEA, is largely driven by concerns about the country's air pollution and capacity targets.

The Asian giant is also the world market leader in hydropower, bioenergy for electricity and heat, and electric vehicles, the IEA report said. In 2016 the United States remained the second largest growth market for renewables.

However, with US President Donald Trump withdrawing the country from the Paris Agreement on climate change, the country's commitment to renewable energy faces policy uncertainty.

Meanwhile, India continues to grow its renewable electricity capacity, and by 2022, the country is expected to more than double its current renewable electricity capacity, according to the IEA. For the first time, this growth over the forecast period (2016-2022) is higher compared with the European Union, according to the report.

Meanwhile in the EU, renewable energy growth over the forecast period is 40pc lower compared with the previous five-year period.

The low forecast in respect of the EU is based on a number of factors, the IEA said, including weaker electricity demand, overcapacity, and limited visibility on forthcoming auction capacity volumes in some markets.

Overall, the Government has committed to generating 40pc of its electricity from renewable energy sources by 2020.

That target is set to be missed, which would see the Government eventually having to fork out hundreds of millions of euro for carbon credits.

Later this year, Ireland will host Europe's biggest summit on Climate Innovation, during which over 50 nationwide events and initiatives will be held.

 

Related News

View more

Clean energy's dirty secret

Renewable Energy Market Reform aligns solar and wind with modern grid pricing, tackling intermittency via batteries and demand response, stabilizing wholesale power prices, and enabling capacity markets to finance flexible supply for deep decarbonization.

 

Key Points

A market overhaul that integrates variable renewables, funds flexibility, and stabilizes grids as solar and wind grow.

✅ Dynamic pricing rewards flexibility and demand response

✅ Capacity markets finance reliability during intermittency

✅ Smart grids, storage, HV lines balance variable supply

 

ALMOST 150 years after photovoltaic cells and wind turbines were invented, they still generate only 7% of the world’s electricity. Yet something remarkable is happening. From being peripheral to the energy system just over a decade ago, they are now growing faster than any other energy source and their falling costs are making them competitive with fossil fuels. BP, an oil firm, expects renewables to account for half of the growth in global energy supply over the next 20 years. It is no longer far-fetched to think that the world is entering an era of clean, unlimited and cheap, abundant electricity for all. About time, too. 

There is a $20trn hitch, though. To get from here to there requires huge amounts of investment over the next few decades, to replace old smog-belching power plants and to upgrade the pylons and wires that bring electricity to consumers. Normally investors like putting their money into electricity because it offers reliable returns. Yet green energy has a dirty secret. The more it is deployed, the more it lowers the price of power from any source. That makes it hard to manage the transition to a carbon-free future, during which many generating technologies, clean and dirty, need to remain profitable if the lights are to stay on. Unless the market is fixed, subsidies to the industry will only grow.

Policymakers are already seeing this inconvenient truth as a reason to put the brakes on renewable energy. In parts of Europe and China, investment in renewables is slowing as subsidies are cut back, even as Europe’s electricity demand continues to rise. However, the solution is not less wind and solar. It is to rethink how the world prices clean energy in order to make better use of it.

 

Shock to the system

At its heart, the problem is that government-supported renewable energy has been imposed on a market designed in a different era. For much of the 20th century, electricity was made and moved by vertically integrated, state-controlled monopolies. From the 1980s onwards, many of these were broken up, privatised and liberalised, so that market forces could determine where best to invest. Today only about 6% of electricity users get their power from monopolies. Yet everywhere the pressure to decarbonise power supply has brought the state creeping back into markets. This is disruptive for three reasons. The first is the subsidy system itself. The other two are inherent to the nature of wind and solar: their intermittency and their very low running costs. All three help explain why power prices are low and public subsidies are addictive.

First, the splurge of public subsidy, of about $800bn since 2008, has distorted the market. It came about for noble reasons—to counter climate change and prime the pump for new, costly technologies, including wind turbines and solar panels. But subsidies hit just as electricity consumption in the rich world was stagnating because of growing energy efficiency and the financial crisis. The result was a glut of power-generating capacity that has slashed the revenues utilities earn from wholesale power markets and hence deterred investment.

Second, green power is intermittent. The vagaries of wind and sun—especially in countries without favourable weather—mean that turbines and solar panels generate electricity only part of the time. To keep power flowing, the system relies on conventional power plants, such as coal, gas or nuclear, to kick in when renewables falter. But because they are idle for long periods, they find it harder to attract private investors. So, to keep the lights on, they require public funds.

Everyone is affected by a third factor: renewable energy has negligible or zero marginal running costs—because the wind and the sun are free. In a market that prefers energy produced at the lowest short-term cost, wind and solar take business from providers that are more expensive to run, such as coal plants, depressing wholesale electricity prices, and hence revenues for all.

 

Get smart

The higher the penetration of renewables, the worse these problems get—especially in saturated markets. In Europe, which was first to feel the effects, utilities have suffered a “lost decade” of falling returns, stranded assets and corporate disruption. Last year, Germany’s two biggest electricity providers, E.ON and RWE, both split in two. In renewable-rich parts of America, power providers struggle to find investors for new plants, reflecting U.S. grid challenges that slow a full transition. Places with an abundance of wind, such as China, are curtailing wind farms to keep coal plants in business.

The corollary is that the electricity system is being re-regulated as investment goes chiefly to areas that benefit from public support. Paradoxically, that means the more states support renewables, the more they pay for conventional power plants, too, using “capacity payments” to alleviate intermittency. In effect, politicians rather than markets are once again deciding how to avoid blackouts. They often make mistakes: Germany’s support for cheap, dirty lignite caused emissions to rise, notwithstanding huge subsidies for renewables. Without a new approach the renewables revolution will stall.

The good news is that new technology can help fix the problem.  Digitalisation, smart meters and batteries are enabling companies and households to smooth out their demand—by doing some energy-intensive work at night, for example. This helps to cope with intermittent supply. Small, modular power plants, which are easy to flex up or down, are becoming more popular, as are high-voltage grids that can move excess power around the network more efficiently, aligning with common goals for electricity networks worldwide.

The bigger task is to redesign power markets to reflect the new need for flexible supply and demand. They should adjust prices more frequently, to reflect the fluctuations of the weather. At times of extreme scarcity, a high fixed price could kick in to prevent blackouts. Markets should reward those willing to use less electricity to balance the grid, just as they reward those who generate more of it. Bills could be structured to be higher or lower depending how strongly a customer wanted guaranteed power all the time—a bit like an insurance policy. In short, policymakers should be clear they have a problem and that the cause is not renewable energy, but the out-of-date system of electricity pricing. Then they should fix it.

 

Related News

View more

Electric car market goes zero to 2 million in five years

Electric Vehicle Market Growth accelerated as EV adoption hit 2 million in 2016, per IEA, led by China, Tesla momentum, policy incentives, charging infrastructure buildout, and diesel decline under Paris Agreement goals.

 

Key Points

EV adoption rose to 2 million in 2016, driven by policy, China, and charging buildout, yet still only 0.2% of cars.

✅ 2M EVs on roads in 2016; 60% YoY growth

✅ China led with >40% of global EV sales

✅ Policies target 30% share by 2030 via EVI

 

The number of electric vehicles on the road rocketed to 2 million in 2016 as the age of electric cars accelerates after being virtually non-existent just five years ago, according to the International Energy Agency.

Registered plug-in and battery-powered vehicles on roads worldwide rose 60% from the year before, according to the Global EV Outlook 2017 report from the Paris-based IEA. Despite the rapid growth, electric vehicles still represent just 0.2% of total light-duty vehicles even as U.S. EV sales continue to soar into 2024, suggesting a turning point.

“China was by far the largest electric car market, accounting for more than 40% of the electric cars sold in the world and more than double the amount sold in the United States,” the IEA wrote in the report published Wednesday. “It is undeniable that the current electric car market uptake is largely influenced by the policy environment.”

A multi government program called the Electric Vehicle Initiative on Thursday will set a goal for 30% market share for battery power cars, buses, trucks and vans by 2030, aligning with projections that driving electric cars within a decade could become commonplace, according to IEA. The 10 governments in the initiative include China, France, Germany, the UK and US.

India, which isn’t part of the group, said last month that it plans to sell only electric cars by the end of the next decade. Countries and cities are looking to electric vehicles to help tackle their air pollution problems.

In order to limit global warming to below 2 degrees Celsius (3.6 degrees Fahrenheit), the target set by the landmark Paris Agreement on climate change, the world will need 600 million electric vehicles by 2040, according to the IEA.

After struggling for consumer acceptance, Tesla Inc. has made electric vehicles cool and trendy, and is pushing into the mass market as the United States approaches a tipping point for mass adoption with the new Model 3 sedan.

Consumer interest and charging infrastructure, as well as declining demand for diesel cars in the wake of Volkswagen’s emissions scandal, has spurred massive investments in plug-in cars, and across Europe the share of electric cars grew during virus lockdown months, reinforcing this momentum. An electrical vehicle “cool factor” could spur sales to 450 million by 2035, according to BP chief economist Spencer Dale.

Volkswagen, the world’s largest automaker, plans to roll out four affordable electric vehicles in the coming years as part of a goal to sell more than 2 million battery-powered vehicles a year by 2025. Mercedes-Benz accelerated the introduction of ten new electric vehicles by three years to 2022 to take on Tesla as the dominance of the combustion engine gradually fades. 

 

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.