Latest Overhead T&D Articles
Single Electricity Market Explained
Single electricity market links regional grids, enabling cross-border trade, renewable integration, and competitive prices. It harmonizes regulations, strengthens energy security, and balances consumption for reliable, efficient, and sustainable electricity supply.
What is a Single Electricity Market?
✅ Enhances grid reliability and cross-border electricity trading
✅ Reduces power outages and stabilizes energy consumption
✅ Supports renewable energy integration and competitive pricing
Understanding the Single Electricity Market: Principles and Impact
The concept of a single electricity market (SEM) has emerged as a transformative approach in the electric power industry. Designed to break down barriers between regional and national electric power markets, a SEM enables interconnected systems to trade electric power more freely. This integration streamlines trading, enhances grid reliability, and ultimately delivers better outcomes for both consumers and the environment.
The governance of the integrated single electricity market (SEM) relies on robust oversight to ensure fairness and transparency. A deputy independent member sits on the SEM Committee, working alongside the utility regulator to oversee policy decisions. Since SEMO is the Single Electricity Market Operator, it manages the wholesale market across jurisdictions, balancing supply and demand while ensuring efficient trading practices. Increasingly, the framework emphasizes the integration of renewable energy sources, which now comprise a significant share of the market, further highlighting the SEM’s role in advancing sustainability and energy security.
The European Union (EU) has pioneered this strategy to combat fragmented energy markets, enabling seamless trading across borders. The success of these markets in regions such as Ireland and Northern Ireland’s All-Island SEM demonstrates the efficiencies that unified regulations and systems can bring. According to SEM annual reports, renewables now contribute more than 40% of electric power supply, up from under 15% in 2007, while emissions intensity has fallen to less than 300 gCO₂/kWh. Consumers have also benefited, with estimated cost savings of hundreds of millions of euros since launch. To understand how soaring energy prices are pushing EU policy toward renewable energy and fossil fuel phase-out, see Europe’s energy crisis is a ‘wake up call’ for Europe to ditch fossil fuels.
How SEMO Works in the Integrated Single Electricity Market
| Function | Description | Impact on Market |
|---|---|---|
| Market Operation | SEMO administers the wholesale electricity market, scheduling and dispatching generation based on bids and demand forecasts. | Ensures electricity is produced and delivered at least cost while maintaining system balance. |
| Settlement & Pricing | Calculates market-clearing prices, settles payments between generators, suppliers, and traders, and publishes transparent pricing data. | Provides fair competition and reliable price signals for investment and trading. |
| Integration of Renewables | Incorporates renewable sources of electricity (e.g., wind, solar) into dispatch schedules, balancing variability with conventional generation and reserves. | Promotes sustainability and supports EU decarbonization targets. |
| Regulatory Compliance | Operates under oversight of the SEM Committee and national utility regulators, ensuring compliance with aligned market rules and codes. | Builds trust in market integrity, fairness, and transparency. |
| Cross-Border Trading | Coordinates with transmission system operators (TSOs) to enable interconnection and market coupling with neighboring regions. | Enhances security of supply, increases efficiency, and lowers overall costs. |
| Dispute Resolution & Transparency | Publishes market reports, handles queries, and participates in regulatory processes with input from independent members (including the deputy independent member). | Strengthens accountability and confidence among stakeholders. |
Key Features of a Single Electricity Market
Market Integration: National or regional electric power systems are coordinated under common trading and regulatory frameworks, eliminating trade barriers and promoting cross-border flows.
Harmonized Regulations: Grid codes, market rules, and technical standards are aligned. This ensures fair competition, non-discriminatory access, and transparency for all market participants. Disputes are settled by joint regulatory authorities, while capacity payments and green certificates (GOs/REGOs) are managed consistently across jurisdictions.
Competitive Pricing: Wholesale prices are determined based on supply and demand, thereby enhancing price signals and encouraging investment in the most suitable technologies.
Security of Supply: By pooling resources and sharing reserves, integrated markets lower the risk of blackouts and price spikes following local disruptions. Balancing markets also enables flexible resources to provide stability in real-time.
To get insight into how EU policy-makers are reacting to surging utility bills, check out this story on how EU balks at soaring electricity prices.
The Irish Single Electricity Market (SEM): A Leading Example
Ireland and Northern Ireland launched one of the earliest and most successful SEMs in 2007, merging their electric power systems into a single market framework. This enabled the dispatch and balancing of electric energy across the entire island, thereby boosting efficiency. The SEM is centrally operated and supported by robust regulatory structures, paving the way for high levels of renewable integration and significant cross-border collaboration.
Recent interconnection projects, such as the upcoming Celtic Interconnector linking Ireland and France, highlight further efforts to deepen integration across Europe. This will enable Ireland to export excess renewable energy, particularly wind, while enhancing France’s access to a flexible supply. Ireland and France will connect their electricity grids - here's how highlights further efforts to deepen market integration across Europe.
Benefits of a Single Electricity Market
-
For Consumers: Enhanced competition helps reduce prices and improve service quality. Fluctuations in individual national markets can be mitigated across the entire region, resulting in more stable pricing.
-
For Producers: Access to a larger market encourages investment in efficient and sustainable energy sources, as well as innovation in electric energy generation and storage.
-
For System Operators: Coordinated scheduling and dispatch lower operational costs, reduce the need for spare capacity, and optimize renewable energy integration.
-
For carbon reduction, shared grids enable nations with abundant renewable energy sources to export clean energy, supporting decarbonization targets across the region.
Challenges and Future Trends
Despite its advantages, creating a single electricity market presents challenges. It requires significant regulatory alignment, market transparency, and ongoing investment in cross-border infrastructure. Market coupling—the seamless linking of day-ahead and intraday mechanisms—is technically complex, requiring robust congestion management and data transparency.
Real-world challenges include Brexit, which introduced new legal and political hurdles for Ireland’s SEM, and subsidy mismatches between Northern Ireland and the Republic of Ireland, which have occasionally created policy friction. Grid congestion and the variability of renewable generation also remain persistent issues.
The future of SEMs will likely involve greater digitalization, advanced congestion management, enhanced cross-border interconnections, and new market models that reward flexible, low-carbon resources. The ongoing overhaul in places like Connecticut and Alberta electricity market changes further reinforce the SEM’s global momentum.
Global comparisons highlight the importance of design choices. While Europe’s SEMs are driven by regulatory harmonization, markets like PJM in the United States rely on competitive wholesale structures, and Australia’s National Electricity Market faces unique challenges of distance and network stability. The Nordic model demonstrates how abundant renewable energy sources can be efficiently traded across multiple countries. These comparisons underline the SEM’s adaptability and relevance worldwide.
The single electricity market is a cornerstone of modern power systems reform, delivering lower prices, improved security, and support for renewable energy. While complex to implement, its benefits are substantial—driving market efficiency, reliability, and sustainability for a more integrated, cleaner energy future. For more on global reforms, see Six key trends that shaped Europe's electricity markets.
Related Articles
Sign Up for Electricity Forum’s Overhead T&D Newsletter
Stay informed with our FREE Overhead T&D Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.
Costly Interconnection Delays
Costly interconnection delays stall grid connection for solar, wind, and storage, driven by interconnection queue backlogs, transmission constraints, lengthy permitting, and network upgrade studies, inflating project CAPEX, financing risk, and PPA timelines.
What Are Costly Interconnection Delays?
Delays in grid connection that create backlogs, raise upgrade costs, and push out timelines for energy projects.
✅ Queue backlogs extend interconnection studies and approvals
✅ Transmission constraints trigger costly network upgrades
✅ Financing and PPA milestones slip, increasing project risk
Utilities Have Found Ways To Save Time & Money
Policy debates on solar incentive and valuation make headlines across the nation, but less attention is paid to the nuts and bolts of solar installation: the interconnection process.
But the struggle there is very real. Take Hawaii, where the high queue of solar applications and slow interconnection process slowed down installations of distributed solar two years ago. Eventually the process was streamlined but it still wavers under the hefty weight of applications.
But performances by some of the busiest utilities in sunny states demonstrate that they have necessary skills to finish interconnections quickly. The new challenge lies in how to transfer those capabilities to utilities slow to catch on. These improvements also intersect with the rise of distributed energy resources, which require streamlined processes to connect efficiently.
The average time it takes from when the rooftop solar installation is finished to when the utilities gives it permission to operate increased from 28 days in 2014 to 45 days last year, according to data from a recent EQ Research survey. Longer queues can exacerbate stress on power distribution networks as crews juggle inspections, metering, and safety checks.
“It was one of the most surprising findings from the survey,” said Chelsea Barnes, EQ’s policy research manager and lead author of Comparing Utility Interconnection Timelines for Small-Scale Solar PV.
There are three overarching reasons why interconnection processes are slowing down, Barnes said.
“The number of interconnection applications is increasing, utilities are not prepared to handle more applications, and there are more applications for interconnections at parts of the distribution system near their interconnection capacities,” Barnes said.
“Many utilities are not prepared to handle the increasing volume of applications.”
Utilities interviewed by Utility Dive said there were some discrepancies in the numbers from EQ Research, which took their data set mostly from installers. But the conclusion was the same: slow interconnection queues didn’t help the growth of solar, leading those utilities to find ways to streamline the process.
For example, San Diego Gas and Electric (SDG&E) moved to online applications when it saw interconnection applications start to rise rapidly, said Amber Albrecht, a spokesperson. Digitizing applicant intake dovetails with modern distribution automation practices that reduce manual handoffs and errors.
And Pepco won the Smart Electric Power Alliance 2016 IOU of the Year Award for its online application for residential and small business customers to help trim the interconnection process, a complaint the utility faced during proceedings over its proposed merger with Exelon.
Moving to an online application process trimmed the processing time by 10 days, according to William Ellis, Pepco’s manager for demand side management and green power connections.
And Tucson Electric Power moved an automated system called PowerClerk that enabled their staff handling applications to tackle 4,000 requests last year, said Chris Lindsey, TEP’s manager of its distribution energy resources engineering group. Such tools are hallmarks of a smarter grid, aligning utility workflows with core smart grid capabilities for visibility and rapid decision-making.
The paper outlined a series of recommendations for all stakeholders to streamline the process, but it only works if all participants are at the table.
Number Discrepancies and What They Might Mean
EQ Research numbers depended on PV installers in 62 service areas spread out in 20 states and the District of Columbia. The group targeted areas with high residential solar penetration. But the numbers are incomplete, noted the group in an email to Utility Dive.
“The report is based on installer survey responses only. We did send a survey to each utility asking for the same data, but only a couple responded, so we relied only on the installer data,” Barnes wrote in an email to Utility Dive. “Most utilities do not have to report interconnection timelines so we could not rely on public reports, either.”
Four utilities in high solar areas responded to Utility Dive requests their interconnection numbers.
San Diego Gas & Electric reported 27,202 applications in 2015, but EQ Research only noted 6,114 in their survey. TEP was another one, reporting roughly 4,000 applications in 2015 but EQ put the number at 1,808.
Possibly the biggest discrepancy lies in Southern California Electric’s numbers. In 2015, SCE reported 56,276 applications, but EQ reported 15,327.
Part of the discrepancy is likely due to EQ's limited samples and in part could be due to differing definitions of the interconnection intervals.
For some utility officials, the numbers didn’t match the data they supplied the group.
“The numbers EQ Research attributes to TEP seem a bit high and do not match the data that we supplied them in response to their survey,” TEP Renewables Program Manager Justin Orkney told Utility Dive.
The time between submitting the application and getting the green light to operate is also shorter than what the EQ survey showed, Orkney said.
Orkney said residential approvals took between 2 days and 3 days in 2014 and 2015 and most are being handled this year on the same day they are submitted.
But that is not the whole story, he added. “For 2016, TEP is averaging 16 calendar days between when the installer tells us the project has been inspected and when the status in PowerClerk (an online portal) is updated.”
The bulk of the difference between “same day” and the “16 calendar days” reports is that permission to operate work is not officially initiated until the Authority Having Jurisdiction (AHJ) issues its permit.
Despite the discrepancies between EQ’s data set and the few utilities surveyed by Utility Dive, the conclusions drawn from the research paper do highlight potential best practices for utilities to speed up the process.
Costs and Causes of Delays
The most important conclusion pulled from the paper is how interconnection delays play a role for utilities, customers and installers.
“It is underappreciated how much these delays have slowed solar growth, caused frustration for customers and installers, and burdened the utility industry,” Barnes said.
Both SDG&E’s Albrecht and TEP’s Orkney said the costs and burden to manually process the applications were hefty until their systems were automated. But the utilities didn’t disclose those amounts.
There is also significant cost to the customer, the paper noted.
“A hypothetical customer in Connecticut who installs a 7 kW system would be deprived of more than $150 in electricity generation for every month that interconnection is delayed,” the paper reports. “Multiplied over many individual systems, the cumulative costs are considerable.”
A National Renewable Energy Lab sturdy said interconnection delays are among many soft costs that make up 64% of the price of a residential solar array. The higher the costs, the bigger the price tag for the customer. Those costs also impact installers, with delays affecting final payments, slowing down their cash flow. It can also have a ripple effect, impacting word-of-mouth advertising for both installers and utilities, according to the paper.
Despite that, many utilities still depend on manual processes, such as mail-in applications, which could delay applications up to 100 days or more.
“The lack of online systems and automation is the main source of interconnection delays that may be as high as 100 days or more, the paper reports. “The challenge in this area may be convincing decision-makers that the long-term benefits outweigh the short-term costs.”
But an efficient system to process interconnection applications is the obvious solution for tackling delays, the researchers found, leading to cost savings down the road.
“Improvements to the interconnection process typically yield cost savings for the utility,” utility staff interviewed by EQ Research added. “The more user-friendly and automated the interconnection application system is, the less staff time is needed.”
EQ Research pushed for a more transparent, integrated process that would allow applicants to track the progress of that application.
Some utilities have streamlined their process and said they have already seen fewer delays and reduced time intervals between submitting and operating. For instance, SDG&E launched its system in 2013 and allows installers to obtain their permission to operate within 24 hours.
For Pepco customers, the utility established an online portal that processes signatures and fee payments, eliminating follow-up paperwork, Ellis told Utility Dive. The utility also engineered a semi-automated technical analysis of applications, which accelerates approval for residential solar arrays, Pepco’s Stephen Steffel told Utility Dive.
Reliability Concerns
Concerns over reliability are another big issue causing some interconnection delays. In solar-heavy states like Hawaii, some distribution system circuits and feeders are near their interconnection capacities, causing utilities and regulators to worry about grid congestion. Strategically deployed critical energy storage can absorb excess generation and smooth feeders during peak PV output.
EQ’s paper acknowledges “fewer data points” on the use of grid reliability as a reason for delays. But, in some places, it has added to tensions between utilities and solar installers.
“Some PV installers believe that utilities are overly cautious in some cases, or that utilities invoke grid reliability concerns as an excuse to delay application processing,” the paper reports. “Utility staff sometimes believe that the PV industry seeks special treatment not granted to other industries.”
One way to mitigate the tension is through regulatory proceedings. Requiring utilities to provide installers with maps or information showing interconnection congestion would allow installers to work around congested system locations.
Some utilities have have already done so, offering “interactive, web-based maps that allow installers to easily identify geographic areas where new DG facilities could encounter problems receiving approval for interconnection,” the paper reports. In parallel, well-planned microgrid projects can localize reliability and defer upgrades on constrained circuits.
“It is not yet common but utilities are starting to do it,” Barnes said.
When installers have that information, they can warn customers in congested areas that approvals will take longer and would likely cost more, she added. “They also can market to customers in less congested locations on the distribution system.”
Some utilities, including PG&E, SDG&E, and National Grid, have integrated automated checks for reliability and safety issues into their application processing, the paper reports. “Checking for concerns early in the application process can save utilities and installers time and money by avoiding the cost of engineer labor to review potential concerns.”
Best Practices
Some states have implemented reporting deadlines, but those so far are less than adequate to speed up interconnections, Barnes said. Those rules lack enforcement requirements or contain other shortcomings, leaving applications stuck in the process.
“Regulators and utilities need to be forward-thinking and to prepare for the renewable energy that state policies will bring onto the grid,” Barnes said,
The paper recommended simplified and accessible online systems with standardized forms as one way to streamline the process. Other methods include collaborating with stakeholders, expediting permitting, and combining the permitting and interconnection process. Keeping consistent rules and regulations as well as firm deadlines is another recommendation. Upgrading field equipment, including modern overhead switchgear innovation, helps integrate new PV safely while controlling capital costs.
Policymakers should keep rules and regulations consistent over the long term. Deadlines should be clear and firm. Regulators should require utilities to be transparent throughout processing, make grid capacity maps or data available to installers, and provide timeline performance reports.
Utilities, regulators, and AHJs should also collaborate to improve the standardization, according to the paper. And if policymakers fail to act, utilities can voluntarily automate grid reliability and penetration data and make grid capacity maps or grid capacity data available to installers. Utilities should also facilitate advanced meter installation. Meanwhile, part of the burden lies with installers to track utility performance and make the source of their findings publicly available.
“Regulators, utilities, AHJs, installers, and customers can all benefit from the experiences and lessons learned in other jurisdictions and from communication among stakeholders, ”the paper concluded.
“Each of these industry participants can encourage and facilitate workshops, webinars, trainings, and other education and outreach activities to enable such learning experiences.”
Related Articles
Understanding How Overhead Switchgear Innovation Cost-Effectively
How Overhead Switchgear Innovation Cost Effectively? Advanced medium-voltage reclosers, vacuum interrupters, and SCADA-enabled smart sensors enhance reliability, reduce arc-flash risk, cut lifecycle maintenance, and optimize distribution networks for grid modernization and predictive maintenance.
How Overhead Switchgear Innovation Cost Effectively?
Deploy SCADA-ready reclosers, vacuum tech, and sensors to boost reliability, cut OPEX, and extend asset life.
✅ Medium-voltage reclosers and sectionalizers lower fault costs
✅ Vacuum interrupters reduce maintenance and minimize arc-flash hazards
✅ SCADA, IoT sensors enable predictive maintenance and uptime
BACKGROUND
Achieving many of the globe’s top priorities depends on an unprecedented expansion of electric generation capacity. A report released last year by the Electric Power Research Institute (EPRI), for example, forecast that achieving net-zero carbon emissions in the U.S. by mid-century would require a nearly 500 percent increase in electricity generating capacity.
A decarbonized future powered largely by renewable electricity generation depends on a reliable grid, especially the transmission grid. A new report by the National Academies of Science, Engineering, and Medicine in the U.S. laid out a blueprint for achieving 2050 net-zero goals, and strengthening and expanding the transmission system was a key component because the transmission system is so important both to integrating renewables and delivering clean energy to where it is consumed. The reliability of the transmission and sub-transmission grid is particularly vital as clean electricity is increasingly relied on to fuel transportation, heating and cooling, and manufacturing and industrial processes. Indeed, the ability to sectionalize and reroute power when an outage hits the sub-transmission system has an outsized impact on reliability because high-voltage grids serve so many homes and businesses. As planners modernize regional networks, an understanding of electricity transmission principles helps explain how long-distance power flows and interconnections support resilience.
The high costs and environmental impacts of status quo solutions
G&W Electric’s Viper®-HV overhead switchgear solution is an important innovation in efforts to simultaneously reduce utility operating expenses (OPEX), improve sub-transmission grid reliability, and integrate more renewables. The genesis of the Viper-HV switching solution was when two utilities approached G&W Electric, one of the U.S.’s largest recloser and switchgear manufacturers, with the request that the company develop a 72.5 kV recloser able to switch and sectionalize sub-transmission power lines to maintain reliability. Deployed on critical transmission lines, such devices expand sectionalizing options without the footprint of new substations.
The reason the utilities and the wider industry were so keen on an overhead solid dielectric solution able to enhance sub-transmission grid reliability was because existing options were inadequate – especially because the sub-transmission system needs both the ability to sectionalize the grid to maintain reliability when faults occur and because it demands advanced monitoring to quickly detect, locate, and respond to outages. Historically, sectionalizing the sub-transmission grid has been handled by motor-operated switches that were insulated either by air or gases such as SF6. Because these products are mechanical devices, they require frequent inspection and maintenance. Not only does this put stress on already tight utility OPEX budgets and a workforce stretched thin by retirements, mechanical devices exposed to the elements can also fail. Utilities increasingly pair such equipment with distribution automation strategies to accelerate fault isolation and service restoration.
Overhead switchgear innovation drives desired and unexpected sub-transmission grid benefits
Development of the Viper-HV overhead switchgear solution took years, with significant input from customers and industry experts. But the advances made deliver important benefits to sub-transmission grid reliability and intelligence, along with improved costs. Indeed, the Viper-HV is a solid dielectric overhead switchgear solution that can respond quickly to temporary faults and deliver the sectionalizing the utilities originally requested, as well as serving as a creative alternative to circuit breakers and bringing reclosing capabilities where applicable. These capabilities align with broader smart grid objectives that emphasize pervasive sensing, coordinated control, and adaptive protection.
Manufactured with a robust, proprietary, time-proven process, the Viper-HV solution is made to solve several pressing sub-transmission grid reliability and cost concerns. For example, it is made to complete a minimum of 10,000 operations without any need for maintenance – which delivers relief to utility OPEX budgets and frees up limited staff for other tasks. Reduced maintenance cycles also streamline power distribution workflows and spare-parts planning for field crews.
Besides providing a low-cost, no-maintenance solution for sub-transmission grid sectionalizing, advanced reclosing technology is important for other reasons as well, including:
Precise location of faults for rapid power restoration
One of the primary challenges facing utilities trying to restore power when there is an outage is finding the fault that caused it. Existing solutions can approximate the location of a fault, which still requires utility personnel to devote precious time to pinpointing its exact location – often in harsh weather conditions – which results in longer restoration times and customer and regulator frustration. The Viper-HV overheard switchgear solution can be equipped with controllers with built-in intelligence enabling precise fault location. The Viper-HV solution includes switching technology plus controllers to include not just impedancebased algorithms but traveling wave fault location determination, which is suitable on longer sub-transmission lines. While most sub-transmission applications are AC, awareness of evolving direct current technology informs protection coordination, converter siting, and interoperability decisions.
Rapid and less costly integration of renewables
Many nations are accelerating deployments of renewable energy to reduce greenhouse gas emissions and achieve ambitious decarbonization targets. Distributed energy resources (DERs) like solar and wind increasingly connect to the transmission and sub-transmission grid – especially when an extra transmission line is added to existing infrastructure to take advantage of an advantageous renewable energy location. DERs introduce complexity to the grid, including more frequent switching than is normal on sub-transmission feeders. The Viper-HV technology, since it was certified as a recloser with 10,000 operations capability, is more suitable than traditional motor operated switches. Furthermore, the form factor of the Viper-HV overhead switchgear is easier to install than other solutions. Pairing sectionalizing schemes with strategically sited critical energy storage can further smooth variability and enhance grid stability during switching events.
Removes need to add expensive and time-consuming grid infrastructure
Another significant benefit of advanced overhead switchgear technology: it can avoid the necessity to add new substations. In cases when a new feeder and circuit breaker need to be added to a sub-transmission system substation, the Viper-HV overhead switchgear solution can increase the speed and lower the cost. That’s because traditional circuit breakers need to be ground-mounted on a concrete pad, which takes up space many substations don’t have and involves permitting that can take a lot of time. By contrast, the Viper-HV overhead switchgear solution can be mounted on the already grounded metal frames most substations have available. This takes no additional space and doesn’t require a time-consuming permitting process.
Advances in technology are essential for increasing the reliability and resiliency of the sub-transmission grid. At the same time, these technologies must lower, rather than elevate, the total overall costs including all aspects of the installation and lifecycle costs (i.e. maintenance, replacement). Sophisticated overhead switchgear technology provides a budget-friendly option for enhancing reliability, resiliency, and helping to green the power grid.
Related Articles
Distributed Energy Resources - Small Scale Power
Distributed energy resources integrate rooftop solar, battery storage, EV charging, and demand response within microgrids and virtual power plants to optimize load, enhance grid resilience, lower costs, and enable real-time, bidirectional power flows.
What Are Distributed Energy Resources?
Distributed energy resources are small-scale, grid-connected assets that generate, store, or manage electricity locally.
✅ Integrates solar PV, batteries, EVs, and demand response
✅ Enhances grid reliability, resilience, and peak-load flexibility
✅ Enables microgrids and virtual power plants for local balancing
Distributed energy resources (DERs) can benefit the power system and individual homes and businesses. DERs can increase the resiliency and reliability of the power grid, reduce greenhouse gas emissions, reduce the overall power cost, and provide power at the point of use. Several types of DERs can be used to generate electricity, including renewable energy sources like solar photovoltaic, wind power, and fuel cells, as well as energy storage systems like battery storage and combined heat and power (CHP) systems. DERs can also be used to power electric vehicles (EVs) and help to reduce greenhouse gas emissions in the transportation sector.
One of the most significant benefits of DERs is their ability to increase the resiliency and reliability of the power grid. When traditional power plants experience outages, DERs can continue to provide power to homes and businesses, reducing the impact of the outage. DERs can also help to reduce the strain on the power grid during peak demand periods, which can help to prevent blackouts and brownouts. Advanced distribution automation can coordinate DER dispatch for reliability gains.
Another benefit of DERs is their ability to reduce greenhouse gas emissions. Renewable energy sources such as solar photovoltaic and wind power do not produce carbon emissions, which can help reduce the amount of greenhouse gases released into the atmosphere. In addition, CHP systems can use natural gas to generate electricity while using waste heat to provide heating or cooling to homes or businesses. This can help reduce overall power consumption and lower carbon emissions.
Electric vehicles (EVs) are another type of DER that can help to reduce greenhouse gas emissions. EVs can be charged using renewable energy sources, which means that they can help to reduce the use of fossil fuels in transportation. In addition, EVs can also provide energy storage, which can help balance the power grid during periods of high demand.
DERs can also help to reduce the overall cost of power. Because DERs are typically small-scale, they can be less expensive to install and maintain than large-scale power plants. In addition, DERs can provide power at the point of use, which can help reduce the amount of power lost during transmission and distribution. For context, understanding power distribution helps explain how localized generation reduces network losses.
Several types of DERs can be used to generate electricity. Solar photovoltaic (PV) systems use solar panels to generate electricity from the sun's energy. Wind power systems use wind turbines to generate electricity from the wind. Fuel cells use hydrogen and oxygen to generate electricity, with water as the only byproduct.
In addition to renewable energy sources, DERs can include energy storage systems such as battery storage. Battery storage systems can store energy generated by renewable energy sources, which can be used during periods of high demand or when the renewable energy source is unavailable. Utilities often rely on critical energy storage to maintain service continuity during contingencies.
DERs can also include CHP systems, which use natural gas to generate electricity and waste heat to provide heating or cooling to homes or businesses. In addition, CHP systems can provide power at the point of use, which can help reduce the amount of power lost during transmission and distribution.
DERs can be connected to the power grid through a smart grid, which can help to monitor and manage the flow of energy. A smart grid can also help to balance the power grid during periods of high demand by using DERs to provide additional power. To learn more about the enabling technologies, see what a smart grid is and how it orchestrates DERs.
One of the most significant advantages of DERs is their small-scale nature, which allows them to be located close to where the electricity is needed, reducing transmission and distribution losses. DERs can also provide power during peak demand periods, helping to avoid the need for additional power plants or transmission lines. These local benefits accrue within electrical distribution systems where congestion and voltage constraints are most acute.
Another advantage of DERs is their ability to operate independently or in concert with other DERs as part of a microgrid. Microgrids are small-scale power systems that can work independently of the primary power grid, allowing for increased resiliency and reliability in the event of a power outage or other disruption to the power grid. Microgrids can also help to integrate DERs into the power system, providing a more flexible and efficient power system. If you are unfamiliar with the concept, explore what a microgrid is and how its islanded operations support resilience.
DERs can also help reduce the overall power cost by reducing the need for expensive transmission and distribution infrastructure. DERs can be installed and operated by individual homes and businesses, reducing the need for large-scale power plants and transmission lines. This can help reduce the overall power cost and provide more affordable power options for consumers.
However, there are also some challenges associated with DERs. One of the biggest challenges is the integration of DERs into the power grid. DERs can generate electricity intermittently, making it challenging to balance the power grid and ensure a consistent electricity supply. In addition, DERs can be located in areas where the power grid may not be able to accommodate additional power generation. This can require upgrades to the power grid and further investment in infrastructure. Projects may also face costly interconnection delays that extend timelines and budgets.
Another challenge is the need for energy storage systems to balance the power grid during high-demand or low-renewable power availability periods. Energy storage systems can be expensive, and their efficiency and reliability can vary depending on the type of technology used.
Despite these challenges, DERs have the potential to play a significant role in the transition to a more sustainable and resilient power system. By leveraging renewable energy sources and energy storage systems, DERs can help reduce greenhouse gas emissions, increase power resiliency and reliability, and reduce the overall energy cost.
What are the characteristics of distributed energy resources?
DERs are small-scale power sources that can be located close to the electricity needed. Renewable energy sources often power them, and they can be connected to the power grid or operate independently as part of a microgrid. They can also provide power during peak demand periods and help reduce the overall energy cost.
What are the benefits of distributed energy resources?
The advantages of using distributed energy resources include increased resiliency and reliability of the power grid, reduced greenhouse gas emissions, and decreased overall power cost. Disadvantages include challenges related to integration into the power grid and the need for energy storage systems to balance the power grid during periods of high demand or low renewable poweravailability.
How do distributed energy resources impact the existing power grid?
DERs can impact the existing power grid by providing additional sources of electricity during peak demand periods and reducing the strain on the power grid. However, the intermittent nature of some DERs can also create challenges in balancing the power grid and ensuring a consistent electricity supply.
What is the role of energy storage in distributed energy systems?
Energy storage plays a critical role in distributed energy systems by allowing excess energy generated by renewable power sources to be stored and used during periods of high demand or low renewable energy availability. Energy storage can also help balance the power grid and ensure a consistent electricity supply.
How are regulations and policies impacting the adoption of distributed energy resources?
Regulations and policies can impact the adoption of DERs by creating incentives for investment in DERs and promoting the integration of DERs into the power system. However, regulations and policies can also create barriers to entry for new technologies or increase the cost of implementation.
What is the future outlook for distributed energy resources, and what trends are emerging in this field?
The future outlook for DERs is promising as the demand for renewable sources and increased resiliency and reliability continue to grow. Emerging trends in this field include the use of blockchain technology to create peer-to-peer markets and the increased use of artificial intelligence and machine learning to optimize the performance of DERs.
Related Articles
Transmission Lines Explained
Transmission lines carry electrical power and RF signals with characteristic impedance, distributed parameters, attenuation, reflection, and phase velocity, enabling efficient power distribution, signal integrity, impedance matching, and low-loss, high-voltage transmission.
What Are Transmission Lines?
Transmission lines are conductors that guide power or RF signals with defined impedance to minimize loss and reflections.
✅ Distributed RLC parameters define impedance and propagation.
✅ Proper termination reduces reflections and VSWR.
✅ Used in high-voltage grids, coaxial cables, and microstrip.
Transmission lines are crucial in delivering electric power from generating stations to consumers. These vital power system components ensure that electrical energy reaches homes, businesses, and industries efficiently and safely. This article explores transmission lines' fundamentals, types, materials, and environmental impact. For a broader grid perspective, see how electricity transmission integrates generation, substations, and long-distance corridors in practice.
Types of Transmission Lines
There are two main categories of transmission lines: overhead and underground. Overhead lines, the most common type, are suspended above the ground using transmission towers. These structures facilitate electric power transportation over long distances at high voltage levels. Overhead lines are cost-effective and easy to maintain but can be visually unappealing and susceptible to weather-related damage. Utilities increasingly deploy advanced overhead switchgear innovation to improve reliability and fault isolation on exposed spans.
On the other hand, underground power cables are buried beneath the ground and are generally used in urban areas or environmentally sensitive regions. Although less prone to weather-related issues and more visually pleasing, they are more expensive to install and maintain. In dense urban networks, coordinated electrical distribution systems planning helps align cable routes with load centers and maintenance access.
Understanding the Functioning of Transmission Lines
Transmission lines are responsible for carrying electrical energy from power generation facilities to substations located near consumers. These lines consist of conductors typically made of copper or aluminum. The conductors are designed to have a specific cross-sectional area to accommodate the flow of electrical current without causing excessive power losses or overheating. For certain corridors and submarine links, modern direct current technology can lower losses and improve controllability compared with conventional AC lines.
The flow of electrical energy along transmission lines is subject to certain natural phenomena, such as electromagnetic fields, which can influence the line's performance. Engineers design transmission lines with a specific characteristic impedance to minimize these effects and ensure efficient power transmission. This parameter measures the line's opposition to alternating current (AC) flow at a particular frequency.
Minimizing Transmission Line Losses
Power losses along transmission lines are an important concern in electrical engineering. These losses occur due to the resistance of the conductors and can lead to decreased efficiency and higher operational costs. Therefore, engineers employ various techniques to minimize line losses, such as selecting low-resistance conductors, optimizing conductor size, and using higher voltage levels for long-distance power transmission. These strategies ultimately support resilient power distribution by reducing upstream transmission inefficiencies that propagate through the grid.
Materials Used in Transmission Lines
Conductors for transmission lines are commonly made of copper or aluminum, both of which offer good conductivity and mechanical strength. The choice of material depends on factors such as cost, availability, and environmental considerations. Transmission towers are typically constructed from steel or aluminum, offering strength and durability while minimizing weight. Line hardware selections often include durable glass electrical insulators to provide mechanical strength while maintaining excellent dielectric performance.
Environmental Impacts of Transmission Lines
The construction and operation of transmission lines can have significant environmental impacts. The visual effects on landscapes and the potential harm to wildlife, such as birds colliding with conductors, are key concerns for overhead lines. Electromagnetic fields produced by transmission lines have also raised concerns about potential health effects on humans, although research has not provided conclusive evidence of harm. Appropriate specification of each electrical insulator can mitigate leakage currents and flashover risks that might otherwise affect habitats and nearby communities.
In contrast, underground power distribution lines have a smaller visual impact and pose fewer risks to wildlife. However, their installation can disturb ecosystems and contribute to soil erosion. Additionally, the materials used in transmission lines and towers can have environmental consequences, such as the energy required for their production and waste materials disposal.
Comparing Underground and Overhead Transmission Lines
Both overhead and underground transmission lines have their own set of advantages and disadvantages. Overhead lines are more cost-effective and easier to maintain but are more susceptible to weather-related damage and have a greater visual impact on the environment. Underground lines offer aesthetic and environmental benefits but are more expensive to install and maintain. The choice between the two options largely depends on budget, location, and ecological considerations.
In conclusion, transmission lines are essential electrical grid components, enabling the efficient distribution of electric power across vast distances. Understanding these lines' types, materials, and environmental implications is crucial for making informed decisions about their design, installation, and maintenance. Engineers and planners can develop transmission infrastructure that balances cost, efficiency, and environmental concerns by considering all relevant factors.
Ensuring electrical energy's continued and efficient flow is paramount for modern society. The various transmission lines, such as overhead lines and underground power cables, have unique benefits and challenges. We can work towards more effective and sustainable power distribution solutions by understanding the materials used, the way transmission lines function, and the potential environmental impacts.
The role of transmission lines in the electrical grid cannot be overstated. As technology advances and our reliance on electricity grows, it is increasingly important to understand these essential components thoroughly. Through diligent research and continuous innovation, we can continue improving the efficiency and sustainability of our power systems, ensuring a reliable and secure electricity supply for generations to come.
Addressing the questions and concerns surrounding transmission lines can promote greater awareness and understanding of this vital aspect of our power infrastructure. As we seek innovative solutions for efficient power delivery, we can look forward to a future with more sustainable and environmentally friendly electrical transmission systems.
Transmission lines are an integral part of the electric power system, critical in delivering electrical energy from power generation facilities to consumers. Understanding the various aspects of transmission lines, such as their types, functioning, materials, and environmental impact, is essential for the ongoing development and maintenance of efficient and sustainable power distribution infrastructure. As we continue to advance in our understanding and innovation, the future of transmission lines promises increased efficiency, sustainability, and reliability for future generations.
Related Articles
Glass Electrical Insulators in T&D
Glass electrical insulators support and separate conductors in power lines, preventing unwanted current flow. Known for high dielectric strength and durability, they resist weathering and mechanical stress, ensuring reliable performance in transmission and distribution.
What are Glass Electrical Insulators?
Glass electrical insulators are non-conductive components used in power systems to suspend and isolate energized conductors.
✅ Provide strong dielectric insulation and mechanical stability
✅ Resist environmental stress, UV exposure, and contaminants
✅ Commonly used in high-voltage transmission and distribution networks
Glass insulators are essential components in modern power systems, ensuring the safe and reliable flow of electricity from generating stations to consumers. Their role is not only to hold conductors but also to prevent leakage currents and flashovers. Understanding their properties, applications, and maintenance is crucial for utility professionals who design and operate reliable networks. To understand the role of glass electrical insulators in the grid, begin with an overview of long-distance power transmission and the planning and maintenance of transmission lines.
Comparison of Electrical Insulator Types
| Feature | Glass | Porcelain | Polymer |
|---|---|---|---|
| Material Composition | Toughened glass | Clay, quartz, feldspar | Composite (fiberglass & silicone) |
| Dielectric Strength | Very high | High | Moderate to high |
| Mechanical Strength | Excellent tensile strength | Strong, brittle under impact | Flexible, resistant to breakage |
| Weather Resistance | Excellent UV and water resistance | Good, can degrade over time | Excellent, designed for outdoors |
| Weight | Heavier than polymer | Heaviest of all | Lightest option |
| Contamination Performance | Self-cleaning via surface runoff | May require maintenance | Hydrophobic, sheds water easily |
| Visibility of Damage | Fractures are easy to detect | Hidden internal cracks possible | External sheath may hide damage |
| Cost | Moderate | Moderate to high | Low to moderate |
| Lifespan | 40–50 years | 30–50 years | 25–35 years |
| Typical Application | Transmission & sub-transmission | Substations & older installations | Distribution lines & coastal areas |
Dielectric and Mechanical Properties
Glass insulators excel due to their high dielectric strength, which enables them to withstand elevated voltages without breaking down. This reduces the risk of short circuits and ensures safe operation. Their performance depends on glass composition, thickness, and surface condition. Equally important is mechanical strength. Toughened glass offers high tensile resistance, withstanding conductor loads, wind pressure, and ice accumulation. These combined properties make glass insulators particularly reliable in high-voltage environments. For fundamentals and material choices that influence glass, porcelain, and polymer, review the primer on electrical insulators.
Electric Field and Creepage Distance
A key design factor is creepage distance—the surface path along the insulator that leakage current might follow. Contamination reduces creepage performance, increasing the risk of flashover. For transmission systems, the design typically requires creepage ratios of 25–31 mm/kV. Voltage distribution across insulator strings must also be balanced; otherwise, stress concentrates on certain discs. Utilities often use grading rings to improve field distribution and reduce corona. Because leakage and flashover risks grow with span length and voltage, compare insulation needs on AC transmission lines.
Failure Modes and Reliability Issues
Despite their strengths, glass insulators are not immune to failures. A well-documented phenomenon is self-blast—spontaneous shattering due to internal impurities or thermal stress. Microcracks, aging, and partial discharge can also degrade performance. While shattering does not usually cause outages—because the cap-and-pin hardware still holds—the damaged “stub” alters electrical behavior and increases stress on the remaining discs. Utilities rely on infrared thermography, UV cameras, and periodic inspection to detect defects early and avoid cascading failures.
Testing and Standards
Glass insulators undergo rigorous testing under IEC and ANSI/IEEE standards. Key tests include:
-
Power-frequency withstand voltage (IEC 60383)
-
Lightning and switching impulse tests
-
Pollution performance tests (IEC 60507, IEC 60815)
-
Mechanical tensile and bending strength tests
-
Thermal cycle and aging tests
-
Salt fog and dust chamber contamination tests
These assessments ensure long-term reliability under electrical, mechanical, and environmental stresses.
Applications of Glass Insulators in Different Voltage Levels
Glass insulators are widely used from low-voltage distribution to ultra-high-voltage transmission. Pin-type insulators serve lower voltages, while suspension discs—linked in strings of 10–12 discs for a 400 kV line—handle higher voltages. Strain insulators manage tensile forces at line ends and angles. Post insulators are common in substations. Each design addresses specific electrical and mechanical demands. On the distribution side, insulator selection is directly tied to topology and contamination levels, as covered in electric power distribution and deeper system design in electrical distribution systems.
Environmental Impact of Glass Insulators
Glass offers environmental advantages compared to porcelain and polymers. It is made from abundant raw materials and is 100% recyclable. Although energy-intensive to produce, its long service life and recyclability reduce its lifecycle impact. Studies also show that glass insulators maintain their surface properties over decades, thereby reducing the need for maintenance. A foundational overview of materials and construction can be found in the article on the electrical insulator.
Innovations and Coatings
Modern developments include glass insulators with hydrophobic surface coatings to improve pollution performance, hybrid assemblies combining glass and polymer, and anti-pollution profiles tailored for coastal or desert regions. These innovations extend lifespan, reduce cleaning cycles, and lower the risk of self-blast.
Case Studies and Field Experience
Long-term field studies, such as GCCIA’s evaluation of coated glass insulators after 15 years of service, report low failure rates and excellent resistance to contamination. Utilities note that visible breakage makes inspection easier than with porcelain or polymer, where hidden defects can persist unnoticed.
Economics and Market Trends
Global demand for glass insulators is increasing with the growth of renewable energy integration and transmission expansion. While initial costs are moderate, lifecycle benefits—long lifespan, low maintenance, and recyclability—make glass attractive compared to polymers that may degrade faster. Market reports indicate glass remains dominant in transmission, while polymers expand in distribution. Utilities also consider using monitoring devices, such as fault indicators, to complement insulator inspection and maintenance.
Installation and Maintenance
Proper installation ensures maximum performance. Insulators must be aligned to minimize mechanical stress and installed with the correct torque on the hardware. Best practices include live-line inspection, periodic cleaning in polluted areas, and prompt replacement of shattered units. Preventive maintenance is critical to sustaining high reliability.
Best Practices
Glass insulators combine high dielectric strength, mechanical durability, and environmental resilience. Their visible failure modes simplify inspection, while their recyclability supports sustainability goals. Challenges include weight, impact vulnerability, and risk of self-blast, but innovations and coatings are reducing these limitations. For high-voltage transmission, glass remains one of the most reliable insulator options, provided utilities follow rigorous installation, testing, and maintenance protocols. In AC networks, insulators play a vital role in supporting AC transmission lines and preventing leakage currents under high stress.
Frequently Asked Questions
What are the advantages and disadvantages of glass insulators?
Glass insulators provide high dielectric strength, long lifespan, and recyclability. Drawbacks include weight, brittleness, and susceptibility to vandalism.
What is creepage distance, and why is it important?
Creepage distance is the surface path along the insulator that leakage current can travel. Adequate creepage ensures resistance to flashover in polluted or wet environments.
What tests ensure the reliability of glass insulators?
Tests include power-frequency withstand, impulse tests, tensile and bending strength, and pollution performance under IEC 60383 and related standards.
What happens when a glass insulator shatters?
The insulator becomes a stub. The line remains mechanically intact, but electrical stress increases on adjacent discs, so damaged units must be replaced.
When should glass be chosen over porcelain or polymer?
Glass is preferred for high-voltage lines where durability, recyclability, and the ability to detect visible failures are priorities. Polymers are better suited for lightweight distribution applications or in regions with heavy salt fog.
Related Articles
High Voltage AC Transmission Lines
Ac transmission lines deliver alternating current across the power grid using high voltage, overhead conductors, and insulators, controlling reactive power, impedance, and corona effects to minimize losses, improve efficiency, and ensure reliable long-distance electricity transmission.
What Are AC Transmission Lines?
Ac transmission lines carry high-voltage AC power long distances with minimal losses.
✅ Typical voltages: 69 kV to 765 kV; higher reduces I2R losses
✅ Requires reactive power compensation: shunt capacitors, SVC, STATCOM
✅ Design factors: conductor bundling, corona control, insulation coordination
Three-phase electric power systems are used for high and extra-high voltage AC transmission lines (50kV and above). The pylons must therefore be designed to carry three (or multiples of three) conductors. The towers are usually steel lattices or trusses (wooden structures are used in Germany in exceptional cases) and the insulators are generally glass discs assembled in strings whose length is dependent on the line voltage and environmental conditions. One or two earth conductors (alternative term: ground conductors) for lightning protection are often added to the top of each pylon. For background on material properties, the electrical insulator overview provides relevant design considerations.
Detail of the insulators (the vertical string of discs) and conductor vibration dampers (the weights attached directly to the cables) on a 275,000 volt suspension pylon near Thornbury, South Gloucestershire, England. In some countries, pylons for high and extra-high voltage are usually designed to carry two or more electric circuits. For double circuit lines in Germany, the “Danube” towers or more rarely, the “fir tree” towers, are usually used. If a line is constructed using pylons designed to carry several circuits, it is not necessary to install all the circuits at the time of construction. Medium voltage circuits are often erected on the same pylons as 110 kV lines. Paralleling circuits of 380 kV, 220 kV and 110 kV-lines on the same pylons is common. Sometimes, especially with 110 kV-circuits, a parallel circuit carries traction lines for railway electrification. Additional context on span lengths, conductor bundles, and right of way is covered in this transmission lines reference for practitioners.
High Voltage DC Transmission Pylons
High voltage direct current (HVDC) transmission lines are either monopolar or bipolar systems. With bipolar systems a conductor arrangement with one conductor on each side of the pylon is used. For single-pole HVDC transmission with ground return, pylons with only one conductor cable can be used. In many cases, however, the pylons are designed for later conversion to a two-pole system. In these cases, conductor cables are installed on both sides of the pylon for mechanical reasons. Until the second pole is needed, it is either grounded, or joined in parallel with the pole in use. In the latter case, the line from the converter station to the earthing (grounding) electrode is built as underground cable. Engineers can review converter topologies, pole configurations, and control methods in the direct current technology guide to inform design choices.
Guidance on electrode placement, resistivity, and corrosion protection is summarized in the grounding electrodes overview relevant to HVDC return paths.
Raliway Traction Line Pylons
Pylons used for single-phase AC railway traction lines are similar in construction to pylons used for 110 kV-three phase lines. Steel tube or concrete poles are also often used for these lines. However, railway traction current systems are two-pole AC systems, so traction lines are designed for two conductors (or multiples of two, usually four, eight, or twelve). As a rule, the pylons of railway traction lines carry two electric circuits, so they have four conductors. These are usually arranged on one level, whereby each circuit occupies one half of the crossarm. For four traction circuits the arrangement of the conductors is in two-levels and for six electric circuits the arrangement of the conductors is in three levels. With limited space conditions, it is possible to arrange the conductors of one traction circuit in two levels. Running a traction power line parallel to high-voltage transmission lines for threephase AC on a separate crossarm of the same pylons is possible. If traction lines are led parallel to 380 kV-lines, the insulation must be designed for 220 kV because, in the event of a fault, dangerous overvoltages to the three-phase alternating current line can occur. Traction lines are usually equipped with one earth conductor. In Austria, on some traction circuits, two earth conductors are used. Integration with substation feeders and sectioning posts must align with the power distribution practices used along the route.
Types Of Pylons
Specific Functions:
- anchor pylons (or strainer pylons) utilize horizontal insulators and occur at the endpoints of conductors.
- pine pylon – an electricity pylon for two circuits of three-phase AC current, at which the conductors are arranged in three levels. In pine pylons, the lowest crossbar has a wider span than that in the middle and this one a larger span than that on the top.
- Twisting pylons are anchor pylons at which the conductors are “twisted” so that they exchange sides of the pylon.
- long distance anchor pylon
A long distance anchor pylon is an anchor pylon at the end of a line section with a long span. Large gaps between pylons reduces the restraints on the movement of the attached conductors. In such situations, conductors may be able to swing into contact with each during high wind, potentially creating a short circuit. Long distance anchor pylons must be very stably built due to the large weight of the exceptionally long cables. They are implemented occasionally as portal pylons. In extreme cases, long distance anchor pylons are constructed in pairs, each supporting only a single cable, in an effort to reduce the strain of large spans.
Branch Pylon: In the layout of an overhead electrical transmission system, a branch pylon denotes a pylon which is used to start a line branch. The branch pylon is responsible for holding up both the main-line and the start of the branch line, and must be structured so as to resist forces from both lines. Branch pylons frequently, but not always, have one or more cross beams transverse to the direction of travel of the line for the admission of the branching electric circuits. There are also branch pylons where the cross beams of the branching electric circuits lie in the direction of travel of the main line. Branch pylons without additional cross beams are occasionally constructed. Branch pylons are nearly always anchor pylons (as they normally must ground the forces from the branch line). Branch pylons are often constructed similarly to final pylons; however, at a branch pylon the overhead line resumes in both directions, as opposed to only one direction as with a final pylon.
Anchor Portal: An anchor portal is a support structure for overhead electrical power transmission lines in the form of a portal for the installation of the lines in a switchyard. Anchor portals are almost always steel-tube or steel-framework constructions.
Termination Pylon: Anchor pylons or strainer pylons utilize horizontal insulators and occur at the endpoints of conductors. Such endpoints are necessary when interfacing with other modes of power transmission (see image) and, due to the inflexibility of the conductors, when significantly altering the direction of the pylon chain. Anchor pylons are also employed at branch points as branch pylons and must occur at a maximum interval of 5 km, due to technical limitations on conductor length. Conductors are connected at such pylons by a short conductor cable “strained” between both ends. They often require anchor cables to compensate for the asymmetric attachment of the conductors. Therefore, anchor pylons tend to be more stably built than a support pylon and are often used, particularly in older construction, when the power line must cross a large gap, such as a railway line, river, or valley. A special kind of an anchor pylon is a termination pylon. It is used for the transition of an overhead powerline to an underground cable. A termination pylon at which the powerline runs further as well as overhead line and as underground cable is a branch pylon for a cable branch. For voltages below 30kV, pylon transformers are also used. Twisted pylons are anchor pylons at which the conductors are “twisted” so that they exchange sides of the pylon. Anchor pylons may also have a circuit breaker attached to their crossbeam. These so called switch pylons are operated from the ground by the use of long sticks. The attachment of circuit breakers to pylons is only practical when voltages are less than 50kV. Where sectionalizing or protection is required aloft, utilities are adopting overhead switchgear innovations to reduce footprint and maintenance.
Materials Used
- Wood Pylon
- Concrete Pylon
- Steel Tube Pylon
- Lattice Steel Pylon
Conductor Arrangements
Portal Pylon: In electricity distribution, a portal pylon is a type of pylon with which the cross beams on the conductor cables rest on at least two towers. Portal pylons can be made of wood, concrete, steel tubing or steel lattice. They are used in German railroad wiring because of their enormous space requirement as a rule only for anchor pylons, which have to resist high traction power and as bases for lines in switchgears as anchor portals. Their application and clearances are coordinated with prevailing electrical distribution systems standards for safe operation.
Delta Pylon: A delta pylon is a type of support structure for high-voltage electric power transmission lines. The pylon has a V-shapedtop for the admission of the cross beam. Delta pylons are usually established only for one electric circuit, occasionally for two electric circuits. They are used for voltages up to 765 kV. Delta pylons are far more common in the USA, France, Spain, Italy and formerYugoslavia, while in Germany on delta pylons shifted high voltage transmission lines are very rare.
Single-level Pylon: A single-level pylon is an electricity pylon for an arrangement of all conductor cables on a pylon in one level. The singlelevel pylon leads to a low height of the pylons, connected with the requirement for a large right of way. It is nearly always used for overhead lines for high-voltage direct current transmissions and traction current lines. If three-phase current is used, if the height of pylons may not exceed a certain value.
Two-level Pylon: A two-level pylon is a pylon at which the circuits are arranged in two levels on two crossbars. Two-level pylons are usually designed to carry four conductors on the lowest crossbar and two conductors at the upper crossbar, but there are also other variants, e.g. carrying six conductors in each level or two conductors on the lowest and four on the upper crossbar. Two-level pylons are commonplace in former West-Germany, and are also called Donau pylons after the river Danube.
Three-level Pylon: A three-level pylon is a pylon designed to arrange conductor cables on three crossbars in three levels. For two three-phase circuits (6 conductor cables), it is usual to use fir tree pylons and barrel pylons. Three-level pylons are taller than other pylon types, but require only a small right-of-way. They are very popular in a number of countries.
Three-level Pylon: A three-level pylon is a pylon designed to arrange conductor cables on three crossbars in three levels. For two three-phase circuits (6 conductor cables), it is usual to use fir tree pylons and barrel pylons. Three-level pylons are taller than other pylon types, but require only a small right-of-way. They are very popular in a number of countries.
From: Overhead and Underground T&D Handbook, Volume 1, The Electricity Forum