Wind farm to benefit from ecoENERGY program

By Marketwire


CSA Z463 Electrical Maintenance

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 6 hours Instructor-led
  • Group Training Available
Regular Price:
$249
Coupon Price:
$199
Reserve Your Seat Today
Canadian Hydro Developers, Inc. announced that it has signed a Contribution Agreement with the Government of Canada for funding under the ecoENERGY for Renewable Power program for phase II of the Melancthon EcoPower Centre.

The Melancthon EcoPower Centre, located in Melancthon and Amaranth Townships near Shelburne, Ontario, two hours northwest of Toronto, is 100% owned and operated by Canadian Hydro and consists of two phases. Together, both phases of the Melancthon EcoPower Centre are expected to generate 545 GWh, providing enough renewable power to supply approximately 70,000 average Canadian homes.

The 67.5 MW phase I achieved commercial operations on March 4, 2006 and receives $10 per MWh for 10 years from Natural Resources Canada. The 132 MW phase II reached commercial operation on November 30, 2008 and will receive a $10 per MWh incentive for 10 years under the ecoENERGY for Renewable Power program, in accordance with the terms of the agreement.

"Our support for the Melancthon Wind Farm demonstrates our Government's commitment to increase the supply of clean, renewable energy for Canadians," said the Honourable Lisa Raitt, Minister of Natural Resources. "This investment strengthens our goal of having 90 per cent of Canada's electricity derived from non-emitting sources by 2020, while ensuring that the clean energy produced is delivered to Canadians at competitive prices."

"Canadian Hydro thanks the Government of Canada for its support of renewable energy through the ecoENERGY for Renewable Power program," said John Keating, CEO of Canadian Hydro. "This program is an important part of supporting the development of renewable energy in Canada at a level that allows Canadian renewable energy to compete with other incentives worldwide. We encourage the Government of Canada to extend the program beyond its current capacity to support continued future growth."

Canadian Hydro Developers, Inc. is committed to Building a Sustainable Future. The Company is the largest and most diversified developer, owner and operator of 20 renewable power generation facilities in Canada totaling net 496 MW of capacity in operation, 385 MW in and nearing construction and 1,632 MW in development. The renewable generation portfolio is diversified across three technologies (water, wind and biomass) in the provinces of British Columbia, Alberta, Ontario, and Quebec. This portfolio is unique in Canada as all facilities are certified, or slated for certification, under Environment Canada's EcoLogo Program.

Businesses, municipalities, institutions and organizations are eligible to apply for funding under the ecoENERGY for Renewable Power program. The initiative provides $1.48 billion to increase Canada's supply of clean electricity from renewable sources such as wind, biomass, low-impact hydro, geothermal, solar photovoltaic and ocean energy. It will encourage the production of up to 4,000 megawatts of new electricity from renewable energy sources - enough electricity to power about one million homes.

Related News

BC Hydro suspends new crypto mining connections due to extreme electricity use

BC Hydro Cryptocurrency Mining Suspension pauses new grid connections for Bitcoin data centers, preserving electricity for EVs, heat pumps, and industry electrification, as Site C capacity and megawatt demand trigger provincial energy policy review.

 

Key Points

An 18-month pause on new crypto-mining grid hookups to preserve electricity for EVs, heat pumps, and electrification.

✅ 18-month moratorium on new BC Hydro crypto connections

✅ Preserves capacity for EVs, heat pumps, and industry

✅ 21 pending mines sought 1,403 MW; Site C adds 1,100 MW

 

New cryptocurrency mining businesses in British Columbia are now temporarily banned from being hooked up to BC Hydro’s electrical grid.

The 18-month suspension on new electricity-connection requests is intended to provide the electrical utility and provincial government with the time needed, a move similar to N.B. Power's pause during a crypto review, to create a permanent framework for any future additional cryptocurrency mining operations.

Currently, BC Hydro already provides electricity to seven cryptocurrency mining operations, and six more are in advanced stages of being connected to the grid, with a combined total power consumption of 273 megawatts. These existing operations, unlike the Siwash Creek project now in limbo, will not be affected by the temporary ban.

The electrical utility’s suspension comes at a time when there are 21 applications to open cryptocurrency mining businesses in BC, even as electricity imports supplement the grid during peaks, which would have a combined total power consumption of 1,403 megawatts — equivalent to the electricity needed for 570,000 homes or 2.3 million battery-electric vehicles annually.

In fact, the 21 cryptocurrency mining businesses would completely wipe out the new electrical capacity gained by building the $16 billion Site C hydroelectric dam, alongside two newly commissioned stations that add supply, which has an output capacity of 1,100 megawatts or enough power for the equivalent of 450,000 homes. Site C is expected to be operational by 2025.

Cryptocurrency mining, such as Bitcoin, use a very substantial amount of electricity to operate high-powered computers around the clock, which perform complex cryptographic and math problems to verify transactions. High electricity needs are the result of not only to run the racks of computers, but to provide extreme cooling given the significant heat produced.

“We are suspending electricity connection requests from cryptocurrency mining operators to preserve our electricity supply for people who are switching to electric vehicles, amid BC Hydro's first call for power in 15 years, and heat pumps, and for businesses and industries that are undertaking electrification projects that reduce carbon emissions and generate jobs and economic opportunities,” said Josie Osborne, the BC minister of energy, mines and low carbon innovation, adding that cryptocurrency mining creates very few jobs for the local economy.

Such businesses are attracted to BC due to the availability of its clean, plentiful, and cheap hydroelectricity, which LNG companies continue to seek for their operations as well.

If left unchecked, the provincial government suggests BC Hydro’s long-term electrical capacity could be wiped out by cryptocurrency mining operations, even as debates over going nuclear persist among residents across the province.

 

Related News

View more

Government of Canada Invests in the Future of Work in Today's Rapidly Changing Electricity Sector

EHRC National Occupational Standards accelerate workforce readiness for smart grids, renewable energy, digitalization, and automation, aligning skills, reskilling, upskilling across the electricity sector with a career portal, labour market insights, and emerging jobs.

 

Key Points

Industry benchmarks from EHRC defining skills, training, and competencies for Canada's evolving electricity workforce.

✅ Aligns skills to smart grids, renewable energy, and automation

✅ Supports reskilling, upskilling, and career pathways

✅ Informs employers with labour market intelligence

 

Smart grids, renewable electricity generation, automation, carbon capture and storage, and electric vehicles are transforming the traditional electricity industry. Technological innovation is reshaping and reinventing the skills and occupations required to support the electrical grid of the 21st century, even as pandemic-related grid warnings underscore resilience needs.

Canada has been a global leader in embracing and capitalizing on drivers of disruption and will continue to navigate the rapidly changing landscape of electricity by rethinking and reshaping traditional occupational standards and skills profiles.

In an effort to proactively address the needs of our current and future labour market, building on regional efforts like Nova Scotia energy training to enhance participation, Electricity Human Resources Canada (EHRC) is pleased to announce the launch of funding for the new National Occupational Standards (NOS) and Career Portal project. This project will explore the transformational impact of technology, digitalization and innovation on the changing nature of work in the sector.

Through this research a total of 15 National Occupational Standards and Essential Skills Profiles will be revised or developed to better prepare jobseekers, including young Canadians interested in electricity to transition into the electricity sector. Occupations to be covered include:

  • Electrical Engineering Technician/ Technologist
  • Power Protection and Control Technician/ Technologist
  • Power Systems Operator
  • Solar Photovoltaic Installer
  • Power Station Operator
  • Wind Turbine Technician
  • Geothermal Heat Pump Installer
  • Solar Thermal Installer
  • Utilities Project Manager
  • Heat Pump Designer
  • Small System Designer (Solar)
  • Energy Storage Technician
  • Smart Grid Specialist
  • 2 additional occupations TBD

The labour market intelligence gathered during the research will examine current occupations or job functions facing change or requiring re-skilling or up-skilling, including specialized courses such as arc flash training in Vancouver that bolster safety competencies, as well as entirely emerging occupations that will require specialized skills.

This project is funded in part by the Government of Canada’ Sectoral Initiative Program and supports its goal to address current and future skills shortages through the development and distribution of sector-specific labour market information.

“Canada’s workforce must evolve with the changing economy. This is critical to building the middle class and ensuring continued economic growth. Our government is committed to an evidence-based approach and is focused on helping workers to gain valuable work experience and the skills they need for a fair chance at success. By collaborating with partners like Electricity Human Resources Canada, we can ensure that we are empowering workers today, and planning for the jobs of tomorrow.” – The Honourable Patty Hajdu, Minister of Employment, Workforce Development and Labour

“By encouraging the adoption of new technologies and putting in place the appropriate support for workers, Canada can minimize both skills shortages and technological unemployment. A long-term strategic and national approach to human resource planning and training is therefore critical to ensuring that we continue to maintain the level of growth, reliability, safety and productivity in the system – with a workforce that is truly inclusive and diverse.” – Michelle Branigan, CEO, EHRC.

“The accelerated pace of change in our sector, including advancements in technology and innovation will also have a huge impact on our workforce. We need to anticipate what those impacts will be so employers, employees and job seekers alike can respond to the changing structure of the sector and future job opportunities.” – Jim Kellett, Board Chair, EHRC.

About Electricity Human Resources Canada

EHRC helps to build a better workforce by strengthening the ability of the Canadian electricity industry to meet current and future needs for a highly skilled, safety-focused, diverse and productive workforce by addressing the electrical safety knowledge gap that can lead to injuries.

 

Related News

View more

Why Canada's Energy Security Hinges on Renewables

Renewable Energy Security strengthens affordability and grid reliability through electrification, wind, and solar, reducing fossil fuel volatility exposed by the Ukraine crisis, aligning with IEA guidance and the Paris Agreement to deliver resilient, low-cost power.

 

Key Points

Renewable energy security is reliable, affordable power from electrification, wind and solar, cutting fossil fuel risk.

✅ Wind and solar now outcompete gas for new power capacity.

✅ Diversifies supply and reduces fossil price volatility.

✅ Requires grid flexibility, storage, and demand response.

 

Oil, gas, and coal have been the central pillar of the global energy system throughout the 20th century. And for decades, these fossil fuels have been closely associated with energy security.  

The perception of energy security, however, is rapidly changing. Renewables form an increasing share of energy sectors worldwide as countries look to deliver on the Paris Agreement and mitigate the effects of climate change, with IEA clean energy investment now significantly outpacing fossil fuels. Moreover, Russia’s invasion of Ukraine has demonstrated how relying on fossil fuels for power, heating, and transport has left many countries vulnerable or energy insecure.  

The International Energy Agency (IEA) defines energy security as “the uninterrupted availability of energy sources at an affordable price” (IEA, 2019a). This definition hardly describes today’s global energy situation, with the cancellation of natural gas deliveries and skyrocketing prices for oil and gas products, and with supply chain challenges in clean energy that also require attention. These circumstances have cascading effects on electricity prices in countries like the United Kingdom that rely heavily on natural gas to produce electricity. In Europe, energy insecurity has been even further amplified since the Russian corporation Gazprom recently cut off gas supplies to several countries.  

As a result, energy security has gained new urgency in Canada and worldwide, creating opportunities in the global electricity market for Canada. Recent events provide a stark reminder of the volatility and potential vulnerability of global fossil fuel markets and supply chains. Even in Canada, as one of the largest producers of oil and gas in the world, the price of fuels depends on global and regional market forces rather than government policy or market design. Thus, the average monthly price for gasoline in Canada hit a record high of CAD 2.07 per litre in May 2022 (Figure 1), and natural gas prices surged to a record CAD 7.54 per MMBtu in May 2022 (Figure 2).  

Energy price increases of this magnitude are more than enough to strain Canadian household budgets. But on top of that, oil and gas prices have accelerated inflation more broadly as it has become more expensive to produce, transport, and store goods, including food and other basic commodities (Global News, 2022).  

 

Renewable Energy Is More Affordable 

In contrast to oil and gas, renewable energy can reliably deliver affordable energy, as shown by falling wholesale electricity prices in markets with growing clean power. This is a unique and positive aspect of today’s energy crisis compared to historical crises: options for electrification and renewable-based electricity systems are both available and cost-effective.  

For new power capacity, wind and solar are now cheaper than any other source, and wind power is making gains as a competitive source in Canada. According to Equinor (2022), wind and solar were already cheaper than gas-based power in 2020. This means that renewable energy was already the cheaper option for new power before the recent natural gas price spikes. As illustrated in Figure 3, the cost of new renewable energy has dropped so dramatically that, for many countries, it is cheaper to install new solar or wind infrastructure than to keep operating existing fossil fuel-based power plants (International Renewable Energy Agency, 2021). This means that replacing fossil-based electricity generation with renewables would save money and reduce emissions. Wind and solar prices are expected to continue their downward trends as more countries increase deployment and learn how to best integrate these sources into the grid. 

 

Renewable Energy Is Reliable 

To deliver on the uninterrupted availability side of the energy security equation, renewable power must remain reliable even as more variable energy sources, like wind and solar, are added to the system, and regional leaders such as the Prairie provinces will help anchor this transition. For Canada and other countries to achieve high energy security through electrification, grid system operations must be able to support this, and pathways to zero-emissions electricity by 2035 are feasible.  

 

Related News

View more

Trump's Order Boosts U.S. Uranium and Nuclear Energy

Uranium Critical Mineral Reclassification signals a US executive order directing USGS to restore critical status, boosting nuclear energy, domestic uranium mining, streamlined permitting, federal support, and energy security amid import reliance and supply chain risks.

 

Key Points

A policy relisting uranium as a critical mineral to unlock funding, speed permits, and strengthen U.S. nuclear security.

✅ Directs Interior to have USGS reconsider uranium classification

✅ Speeds permits for domestic uranium mining projects

✅ Targets import dependence and strengthens energy security

 

In a strategic move to bolster the United States' nuclear energy sector, former President Donald Trump issued an executive order on January 20, 2025, directing the Secretary of the Interior to instruct the U.S. Geological Survey (USGS) to reconsider classifying uranium as a critical mineral. This directive aims to enhance federal support and streamline permitting processes for domestic uranium projects, thereby strengthening U.S. energy security objectives.

Reclassification of Uranium as a Critical Mineral

The USGS had previously removed uranium from its critical minerals list in 2022, categorizing it as a "fuel mineral" that did not qualify for such designation. The recent executive order seeks to reverse this decision, recognizing uranium's strategic importance in the context of the nation's energy infrastructure and geopolitical considerations.

Implications for Domestic Uranium Production

Reclassifying uranium as a critical mineral is expected to unlock federal funding and expedite the permitting process for uranium mining projects within the United States. This initiative is particularly pertinent given the significant decline in domestic uranium production over the past two decades. According to the U.S. Energy Information Administration, domestic production has decreased by 96%, from 4.8 million pounds in 2014 to approximately 121,296 pounds in the third quarter of 2024.

Current Uranium Supply Dynamics

Despite the push for increased domestic production, the U.S. remains heavily reliant on uranium imports. In 2022, 27% of U.S. uranium purchases were sourced from Canada, with an additional 57% imported from countries including Kazakhstan, Uzbekistan, Australia, and Russia; a recent ban on Russian uranium could further disrupt these supply patterns and heighten risks. This reliance on foreign sources has raised concerns about energy security, especially in light of recent geopolitical tensions.

Challenges and Considerations

While the executive order represents a significant step toward revitalizing the U.S. nuclear energy sector, several challenges persist, and energy dominance faces constraints that will shape implementation:

  • Regulatory Hurdles: Accelerating the permitting process for uranium mining projects involves navigating complex environmental and regulatory frameworks, though recent permitting reforms for geothermal hint at potential pathways, which can be time-consuming and contentious.

  • Market Dynamics: The uranium market is subject to global supply and demand fluctuations, and domestic producers may face competition from established international suppliers.

  • Infrastructure Development: Expanding domestic uranium production necessitates substantial investment in mining infrastructure and workforce development, areas that have been underfunded in recent years.

Broader Implications for Nuclear Energy Policy

The executive order aligns with a broader strategy to revitalize the U.S. nuclear energy industry, where ongoing nuclear innovation is critical to delivering stable, low-emission power. The increasing demand for nuclear energy is driven by the global push for zero-emissions energy sources and the need to support power-intensive technologies, such as artificial intelligence servers.

Former President Trump's executive order to reclassify uranium as a critical mineral, aligning with his broader energy agenda and a prior pledge to end the 'war on coal', signifies a pivotal moment for the U.S. nuclear energy sector. By potentially unlocking federal support, including programs advanced by the Nuclear Innovation Act, and streamlining permitting processes, this initiative aims to reduce dependence on foreign uranium sources and enhance national energy security. However, realizing these objectives will require addressing regulatory challenges, market dynamics, and infrastructure needs to ensure the successful revitalization of the domestic uranium industry.

 

Related News

View more

British Columbia Accelerates Clean Energy Shift

BC Hydro Grid Modernization accelerates clean energy and electrification, upgrading transmission lines, substations, and hydro dams to deliver renewable power for EVs and heat pumps, strengthen grid reliability, and enable industrial decarbonization in British Columbia.

 

Key Points

A $36B, 10-year plan to expand and upgrade B.C.'s clean grid for electrification, reliability, and industrial growth.

✅ $36B for lines, substations, and hydro dam upgrades

✅ Enables EV charging, heat pumps, and smart demand response

✅ Prioritizes industrial electrification and Indigenous partnerships

 

In a significant move towards a clean energy transition, British Columbia has announced a substantial $36-billion investment to enlarge and upgrade its electricity grid over the next ten years. The announcement last Tuesday from BC Hydro indicates a substantial 50 percent increase from its prior capital plan. A major portion of this investment is directed towards new consumer connections and improving current infrastructure, including substations, transmission lines, and hydro dams for more efficient power generation.

The catalyst behind this major investment is the escalating demand for clean energy across residential, commercial, and industrial sectors in British Columbia. Projections show a 15 percent rise in electricity demand by 2030. According to the Canadian Climate Institute's models, achieving Canada’s climate goals will require extensive electrification across various sectors, raising questions about a net-zero grid by 2050 nationwide.

BC Hydro is planning substantial upgrades to the electrical grid to meet the needs of a growing population, decreasing industry carbon emissions, and the shift towards clean technology. This is vital, especially as the province works towards improving housing affordability and as households face escalating costs from the impacts of climate change and increasing exposure to harsh weather events. Affordable, reliable power and access to clean technologies such as electric vehicles and heat pumps are becoming increasingly important for households.

British Columbia is witnessing a significant shift from fossil fuels to clean electricity in powering homes, vehicles, and workplaces. Electric vehicle usage in B.C. has increased twentyfold in the past six years. Last year, one in every five new light-duty passenger vehicles sold in B.C. was electric – the highest rate in Canada. Additionally, over 200,000 B.C. homes are now equipped with heat pumps, indicating a growing preference for the province’s 98 percent renewable electricity.

The investment also targets reducing industrial emissions and attracting industrial investment. For instance, the demand for transmission along the North Coastline, from Prince George to Terrace, is expected to double this decade, especially from sectors like mining. Mining companies are increasingly looking for locations with access to clean power to reduce their carbon footprint.

This grid enhancement plan in B.C. is reflective of similar initiatives in provinces like Quebec and the legacy of Manitoba hydro history in building provincial systems. Hydro-Québec announced a substantial $155 to $185 billion investment in its 2035 Action Plan last year, aimed at supporting decarbonization and economic growth. By 2050, Hydro-Québec predicts a doubling of electricity demand in the province.

Both utilities’ strategies focus on constructing new facilities and enhancing existing assets, like upgrading dams and transmission lines. Hydro-Québec, for instance, includes energy efficiency goals in its plan to double customer savings and potentially save over 3,500 megawatts of power.

However, with this level of investment, provinces need to engage in dialogue about priorities and the optimal use of clean electricity resources, with concepts like macrogrids offering potential benefits. Quebec, for instance, has shifted from a first-come, first-served basis to a strategic review process for significant new industrial power requests.

B.C. is also moving towards strategic prioritization in its energy strategy, evident in its recent moratorium on new connections for virtual currency mining due to their high energy consumption.

Indigenous partnership and leadership are also key in this massive grid expansion. B.C.’s forthcoming Call for Power and Quebec’s financial partnerships with Indigenous communities indicate a commitment to collaborative approaches. British Columbia has also allocated $140 million to support Indigenous-led power projects.

Regarding the rest of Canada, electricity planning varies in provinces with deregulated markets like Ontario and Alberta. However, these provinces are adapting too, and the federal government has funded an Atlantic grid study to improve regional planning efforts. Ontario, for example, has provided clear guidance to its system operator, mirroring the ambition in B.C. and Quebec.

Utilities are rapidly working to not only expand and modernize energy grids but also to make them more resilient, affordable, and smarter, as demonstrated by recent California grid upgrades funding announcements across the sector. Hydro-Québec focuses on grid reliability and affordability, while B.C. experiments with smart-grid technologies.

Both Ontario and B.C. have programs encouraging consumers to reduce consumption in real-time, demonstrating the potential of demand-side management. A recent instance in Alberta showed how customer participation could prevent rolling blackouts by reducing demand by 150 megawatts.

This is a crucial time for all Canadian provinces to develop larger, smarter energy grids, including a coordinated western Canadian electricity grid approach for a sustainable future. Utilities are making significant strides towards this goal.
 

 

Related News

View more

Russian hackers accessed US electric utilities' control rooms

Russian Utility Grid Cyberattacks reveal DHS findings on Dragonfly/Energetic Bear breaching control rooms and ICS/SCADA via vendor supply-chain spear-phishing, threatening blackouts and critical infrastructure across U.S. power utilities through stolen credentials and reconnaissance.

 

Key Points

State-backed ops breaching utilities via vendors to reach ICS/SCADA, risking grid disruption and control-room access.

✅ Spear-phishing and watering-hole attacks on vendor networks

✅ Stolen credentials used to reach isolated ICS/SCADA

✅ Potential to trigger localized blackouts and service disruptions

 

Hackers working for Russia were able to gain access to the control rooms of US electric utilities last year, allowing them to cause blackouts, federal officials tell the Wall Street Journal.

The hackers -- working for a state-sponsored group previously identified as Dragonfly or Energetic Bear -- broke into utilities' isolated networks by hacking networks belonging to third-party vendors that had relationships with the power companies, the Department of Homeland Security said in a press briefing on Monday.

Officials said the campaign had claimed hundreds of victims and is likely continuing, the Journal reported.

"They got to the point where they could have thrown switches" to disrupt the flow power, Jonathan Homer, chief of industrial-control-system analysis for DHS, told the Journal.

"While hundreds of energy and non-energy companies were targeted, the incident where they gained access to the industrial control system was a very small generation asset that would not have had any impact on the larger grid if taken offline," the DHS said in a statement Tuesday. "Over the course of the past year as we continued to investigate the activity, we learned additional information which would be helpful to industry in defending against this threat."

Organizations running the nation's energy, nuclear and other critical infrastructure have become frequent targets for cyberattacks in recent years due to their ability to cause immediate chaos, whether it's starting a blackout or blocking traffic signals. These systems are often vulnerable because of antiquated software and the high costs of upgrading infrastructure.

The report comes amid heightened tension between Russia and the US over cybersecurity, alongside US condemnation of power grid hacking in recent months. Earlier this month, US special counsel Robert Mueller filed charges against 12 Russian hackers tied to cyberattacks on the Democratic National Committee.

Hackers compromised US power utility companies' corporate networks with conventional approaches, such as spear-phishing emails and watering-hole attacks as seen in breaches at power plants across the US that target a specific group of users by infecting websites they're known to visit, the newspaper reported. After gaining access to vendor networks, hackers turned their attention to stealing credentials for access to the utility networks and familiarizing themselves with facility operations, officials said, according to the Journal.

Homeland Security didn't identify the victims, the newspaper reports, adding that some companies may not know they had been compromised because the attacks used legitimate credentials to gain access to the networks.

Cyberattacks on electrical systems aren't an academic matter. In 2016, Ukraine's grid was disrupted by cyberattacks attributed to Russia, which is engaged in territorial disputes with the country over eastern Ukraine and the Crimean peninsula. Russia has denied any involvement in targeting critical infrastructure.

President Donald Trump signed an executive order in May designed to bolster the United States' cybersecurity by protecting federal networks, critical infrastructure and the public online. One section of the order focuses on protecting the grid like electricity and water, as well as financial, health care and telecommunications systems.

The Department of Homeland Security didn't respond to a request for comment.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Download the 2025 Electrical Training Catalog

Explore 50+ live, expert-led electrical training courses –

  • Interactive
  • Flexible
  • CEU-cerified