California Takes the Lead in Electric Vehicle and Charging Station Adoption


ev charging

Protective Relay Training - Basic

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$699
Coupon Price:
$599
Reserve Your Seat Today

California EV Adoption leads the U.S., with 37% of registered electric vehicles and 27% of charging locations, spanning Level 1, Level 2, and DC Fast stations, aligned with OCPI and boosted by CALeVIP funding.

 

Key Points

California EV adoption reflects the state's leading EV registrations and growth in private charging infrastructure.

✅ 37% of U.S. EVs, 27% of charging locations in 2022

✅ CALeVIP funding boosts public charging deployment

✅ OCPI-aligned data; EVs per charger rose to 75 in CA

 

California has consistently been at the forefront of electric vehicle (EV) adoption, with EV sales topping 20% in California underscoring this trend, and the proliferation of EV charging stations in the United States, maintaining this position since 2016. According to recent estimates from our State Energy Data System (SEDS), California accounts for 37% of registered light-duty EVs in the U.S. and 27% of EV charging locations as of the end of 2022.

The vehicle stock data encompass all registered on-road, light-duty vehicles and exclude any previous vehicle sales no longer in operation. The data on EV charging locations include both private and public access stations for Legacy, Level 1, Level 2, and DC Fast charging ports, excluding EV chargers in single-family residences. There is a data series break between 2020 and 2021, when the U.S. Department of Energy updated its data to align with the Open Charge Point Interface (OCPI) international standard, reflecting changes in the U.S. charging infrastructure landscape.

In 2022, the number of registered EVs in the United States, with U.S. EV sales soaring into 2024 nationwide, surged to six times its 2016 figure, growing from 511,600 to 3.1 million, while the number of U.S. charging locations nearly tripled, rising from 19,178 to 55,015. Over the same period, California saw its registered EVs more than quadruple, jumping from 247,400 to 1.1 million, and its charging locations tripled, increasing from 5,486 to 14,822.

California's share of U.S. EV registrations has slightly decreased in recent years as EV adoption has spread across the country, with Arizona EV ownership relatively high as well. In 2016, California accounted for approximately 48% of light-duty EVs in the United States, which was approximately 12 times more than the state with the second-highest number of EVs, Georgia. By 2022, California's share had decreased to around 37%, which was still approximately six times more than the state with the second-most EVs, Florida.

On the other hand, California's share of U.S. EV charging locations has risen slightly in recent years, as charging networks compete amid federal electrification efforts and partly due to the California Electric Vehicle Infrastructure Project (CALeVIP), which provides funding for the installation of publicly available EV charging stations. In 2016, approximately 25% of U.S. EV charging locations were in California, over four times as many as the state with the second-highest number, Texas. In 2022, California maintained its position with over four times as many EV charging locations as the state with the second-most, New York.

The growth in the number of registered EVs has outpaced the growth of EV charging locations in the United States, and in 2021 plug-in vehicles traveled 19 billion electric miles nationwide, underscoring utilization. In 2016, there were approximately 27 EVs per charging location on average in the country. Alaska had the highest ratio, with 67 EVs per charging location, followed by California with 52 vehicles per location.

In 2022, the average ratio was 55 EVs per charging location in the United States, raising questions about whether the grid can power an ongoing American EV boom ahead. New Jersey had the highest ratio, with 100 EVs per charging location, followed by California with 75 EVs per location.

Related News

The underwater 'kites' generating electricity as they move

Faroe Islands Tidal Kites harness predictable ocean energy with underwater turbines by Minesto, flying figure-eight paths in fjords to amplify tidal power and deliver renewable electricity to SEV's grid near Vestmanna at megawatt scale.

 

Key Points

Subsea turbines that fly figure-eight paths to harvest tidal currents, delivering reliable renewable power to the grid.

✅ Figure-eight control amplifies speed vs. ambient current

✅ Predictable baseload complementing wind and hydro

✅ 1.2 MW Dragon-class units planned for Faroese fjords

 

Known as "sea dragons" or "tidal kites", they look like aircraft, but these are in fact high-tech tidal turbines, part of broader ocean and river power efforts generating electricity from the power of the ocean.

The two kites - with a five-metre (16ft) wingspan - move underwater in a figure-of-eight pattern, absorbing energy from the running tide. They are tethered to the fjord seabed by 40-metre metal cables.

Their movement is generated by the lift exerted by the water flow - just as a plane flies by the force of air flowing over its wings.

Other forms of tidal power use technology similar to terrestrial wind turbines, and emerging kite-based wind power shows the concept's versatility, but the kites are something different.

The moving "flight path" allows the kite to sweep a larger area at a speed several times greater than that of the underwater current. This, in turn, enables the machines to amplify the amount of energy generated by the water alone.

An on-board computer steers the kite into the prevailing current, then idles it at slack tide, maintaining a constant depth in the water column. If there were several kites working at once, the machines would be spaced far enough apart to avoid collisions.

The electricity is sent via the tethering cables to others on the seabed, and then to an onshore control station near the coastal town of Vestmanna.

The technology has been developed by Swedish engineering firm Minesto, founded back in 2007 as a spin-off from the country's plane manufacturer, Saab.

The two kites in the Faroe Islands have been contributing energy to Faroe's electricity company SEV, and the islands' national grid, on an experimental basis over the past year.

Each kite can produce enough electricity to power approximately 50 to 70 homes.

But according to Minesto chief executive, Martin Edlund, larger-scale beasts will enter the fjord in 2022.

"The new kites will have a 12-metre wingspan, and can each generate 1.2 megawatts of power [a megawatt is 1,000 kilowatts]," he says. "We believe an array of these Dragon-class kites will produce enough electricity to power half of the households in the Faroes."

The 17 inhabited Faroe islands are an autonomous territory of Denmark. Located halfway between Shetland and Iceland, in a region where U.K. wind lessons resonate, they are home to just over 50,000 people.

Known for their high winds, persistent rainfall and rough seas, the islands have never been an easy place to live. Fishing is the primary industry, accounting for more than 90% of all exports.

The hope for the underwater kites is that they will help the Faroe Islands achieve its target of net-zero emission energy generation by 2030, with advances in wave energy complementing tidal resources along the way.

While hydro-electric power currently contributes around 40% of the islands' energy needs, wind power contributes around 12% and fossil fuels - in the form of diesel imported by sea - still account for almost half.

Mr Edlund says that the kites will be a particularly useful back-up when the weather is calm. "We had an unusual summer in 2021 in Faroes, with about two months with virtually no wind," he says.

"In an island location there is no possibility of bringing in power connections from another country, and tidal energy for remote communities can help, when supplies run low. The tidal motion is almost perpetual, and we see it as a crucial addition to the net zero goals of the next decade."

Minesto has also been testing its kites in Northern Ireland and Wales, where offshore wind in the UK is powering rapid growth, and it plans to install a farm off the coast of Anglesey, plus projects in Taiwan and Florida.

The Faroe Islands' drive towards more environmental sustainability extends to its wider business community, with surging offshore wind investment providing global momentum. The locals have formed a new umbrella organisation - Burðardygt Vinnulív (Faroese Business Sustainability Initiative).

It currently has 12 high-profile members - key players in local business sectors such as hotels, energy, salmon farming, banking and shipping.

The initiative's chief executive - Ana Holden-Peters - believes the strong tradition of working collaboratively in the islands has spurred on the process. "These businesses have committed to sustainability goals which will be independently assessed," she says.

"Our members are asking how they can make a positive contribution to the national effort. When people here take on a new idea, the small scale of our society means it can progress very rapidly."

One of the islands' main salmon exporters - Hiddenfjord - is also doing its bit, by ceasing the air freighting of its fresh fish. Thought to be a global first for the Atlantic salmon industry, it is now exporting solely via sea cargo instead.

According to the firm's managing director Atli Gregersen this will reduce its transportation CO2 emissions by more than 90%. However it is a bold move commercially as it means that its salmon now takes much longer to get to key markets.

For example, using air freight, it could get its salmon to New York City within two days, but it now takes more than a week by sea.

What has made this possible is better chilling technology that keeps the fresh fish constantly very cold, but without the damaging impact of deep freezing it. So the fish is kept at -3C, rather than the -18C or below of typical commercial frozen food transportation.

"It's taken years to perfect a system that maintains premium quality salmon transported for sea freight rather than plane," says Mr Gregersen. "And that includes stress-free harvesting, as well as an unbroken cold-chain that is closely monitored for longer shelf life.

"We hope, having shown it can be done, that other producers will follow our lead - and accept the idea that salmon were never meant to fly."

Back in the Faroe Island's fjords, a firm called Ocean Rainforest is farming seaweed.

The crop is already used for human food, added to cosmetics, and vitamin supplements, but the firm's managing director Olavur Gregersen is especially keen on the potential of fermented seaweed being used as an additive to cattle feed.

He points to research which appears to show that if cows are given seaweed to eat it reduces the amount of methane gas that they exhale.

"A single cow will burp between 200 and 500 litres of methane every day, as it digests," says Mr Gregersen. "For a dairy cow that's three tonnes per animal per year.

"But we have scientific evidence to show that the antioxidants and tannins in seaweed can significantly reduce the development of methane in the animal's stomach. A seaweed farm covering just 10% of the largest planned North Sea wind farm could reduce the methane emissions from Danish dairy cattle by 50%."

The technology that Ocean Rainforest uses to farm its four different species of seaweed is relatively simple. Tiny algal seedlings are affixed to a rope which dangles in the water, and they grow rapidly. The line is lifted using a winch and the seaweed strands simply cut off with a knife. The line goes back into the water, and the seaweed starts growing again.

Currently, Ocean Rainforest is harvesting around 200 tonnes of seaweed per annum in the Faroe Islands, but plans to scale this up to 8,000 tonnes by 2025. Production may also be expanded to other areas in Europe and North America.

 

Related News

View more

Ukraine sees new virtue in wind power: It's harder to destroy

Ukraine Wind Energy Resilience shields the grid with wind power along the Black Sea, dispersing turbines to withstand missile attacks, accelerate clean energy transition, aid EU integration, and strengthen energy security and rapid recovery.

 

Key Points

A strategy in Ukraine using wind farms to harden the grid, ensure clean power, and speed recovery from missile strikes.

✅ Distributed turbines reduce single-point-of-failure risk

✅ Faster repair of substations and lines than power plants

✅ Supports EU-aligned clean energy and grid security goals

 

The giants catch the wind with their huge arms, helping to keep the lights on in Ukraine — newly built windmills, on plains along the Black Sea.

In 15 months of war, Russia has launched countless missiles and exploding drones at power plants, hydroelectric dams and substations, trying to black out as much of Ukraine as it can, as often as it can, even amid talk of limiting attacks on energy sites that has surfaced, in its campaign to pound the country into submission.

The new Tyligulska wind farm stands only a few dozen miles from Russian artillery, but Ukrainians say it has a crucial advantage over most of the country’s grid, helping stabilize the system even as electricity exports have occasionally resumed under fire.

A single, well-placed missile can damage a power plant severely enough to take it out of action, but Ukrainian officials say that doing the same to a set of windmills — each one tens of meters apart from any other — would require dozens of missiles. A wind farm can be temporarily disabled by striking a transformer substation or transmission lines, but these are much easier to repair than power plants.

“It is our response to Russians,” said Maksym Timchenko, CEO of DTEK Group, the company that built the turbines in the southern Mykolaiv region — the first phase of what is planned as Eastern Europe’s largest wind farm. “It is the most profitable and, as we know now, most secure form of energy.”

Ukraine has had laws in place since 2014 to promote a transition to renewable energy, both to lower dependence on Russian energy imports, with periods when electricity exports resumed to neighbors, and because it was profitable. But that transition still has a long way to go, and the war makes its prospects, like everything else about Ukraine’s future, murky.

In 2020, 12% of Ukraine’s electricity came from renewable sources — barely half the percentage for the European Union. Plans for the Tyligulska project call for 85 turbines producing up to 500 megawatts of electricity. That’s enough for 500,000 apartments — an impressive output for a wind farm, but less than 1% of the country’s prewar generating capacity.

After the Kremlin began its full-scale invasion of Ukraine in February 2022, the need for new power sources became acute, prompting deliveries such as a mobile gas turbine power plant to bolster capacity. Russia has bombarded Ukraine’s power plants and cut off delivery of the natural gas that fueled some of them.

Russian occupation forces have seized a large part of the country’s power supply, and Russia has built power lines to reactivate the Zaporizhzhia plant in occupied territory, ensuring that its output does not reach territory still held by Ukraine. They hold the single largest generator, the 5,700-megawatt Zaporizhzhia Nuclear Power Plant, which has been damaged repeatedly in fighting and has stopped transmitting energy to the grid, with UN inspectors warning of mines at the site during recent visits. They also control 90% of Ukraine’s renewable energy plants, which are concentrated in the southeast.

The postwar recovery plans Ukraine has presented to supporters including the European Union, which it hopes to join, feature a major new commitment to clean energy, even as a controversial proposal on Ukraine’s nuclear plants continues to stir debate.

 

Related News

View more

Wind power is Competitive on Reliability and Resilience Says AWEA CEO

Wind farm reliability services now compete in wholesale markets, as FERC and NERC endorse market-based solutions that reward performance, bolster grid resilience, and compensate ancillary services like frequency regulation, voltage support, and spinning reserve.

 

Key Points

Grid support from wind plants, including frequency, voltage, ramping, and inertial response via advanced controls.

✅ Enabled by advanced controls and inverter-based technology

✅ Compete in market-based mechanisms for ancillary services

✅ Support frequency, voltage, reserves; enhance grid resilience

 

 

American Wind Energy Association CEO Tom Kiernan has explained to a congressional testimony that wind farms can now compete, as renewables approach market majority, to provide essential electric reliability services. 

Mr Kiernan appeared before the US Congress House Energy and Commerce Committee where he said that, thanks to technological advances, wind farms are now competitive with other energy technologies with regard to reliability and resiliency. He added that grid reliability and resilience are goals that everyone can support and that efforts underway at the Federal Energy Regulatory Commission (FERC) and by market operators are rightly focused on market-based solutions to better compensate generators for providing those essential services.

AWEA strongly agreed with other witnesses on the panel who endorsed market-based solutions in their submitted testimony, including the American Petroleum Institute, Solar Energy Industries Association, Energy Storage Association, Natural Resources Defence Council, National Hydropower Association, and others. However, AWEA is concerned that the Department of Energy’s recent proposal to provide payments to specific resources based on arbitrary requirements is anti-competitive, and threatens to undermine electricity markets that are bolstering reliability and saving consumers billions of dollars per year.

“We support the objective of maintaining a reliable and resilient grid which is best achieved through free and open markets, with a focus on needed reliability services – not sources – and a programme to promote transmission infrastructure.”

Kiernan outlined several major policy recommendations in his testimony, including reliance on competitive markets that reward performance to ensure affordable and reliable electricity, a focus on reliability needs rather than generation sources and the promotion of transmission infrastructure investment to improve resilience and allow consumers greater access to all low-cost forms of energy.

The CEO of the North American Electric Reliability Corporation (NERC) has recently testified that the state of reliability in North America remains strong and the trend line shows continuing improvement year over year. Technological advances and innovation by over 100,000 US wind workers enable wind farms today to provide the grid reliability services traditionally provided by conventional power plants. NERC’s CEO emphasised in its testimony at last month’s hearing that “variable resources significantly diversify the generation portfolio and can contribute to reliability and resilience in important ways.”

 

Related News

View more

China To Generate Electricity From Compressed Air

China Compressed-Air Energy Storage enables grid flexibility using salt caverns in Jiangsu, delivering long-duration storage for wind and solar, 60 MW capacity, dispatchable power, and low-cost, safe, round-the-clock clean energy integration.

 

Key Points

Stores off-peak power by compressing air in salt caverns, then drives turbines on demand to balance renewables.

✅ 60 MW Jintan plant connects to grid; commercial CAES milestone

✅ Uses salt caverns; low-cost long-duration storage; high safety

✅ Balances wind and solar; improves grid flexibility and reliability

 

China is set to connect its first commercial compressed-air energy storage plant to the grid as it seeks more ways to harness fast-growing clean power resources, including new hydropower alongside other long-duration options such as gravity power technologies for around-the-clock use.

China Huaneng Group Co. said its Jiangsu Jintan Salt Cave project recently underwent four days of successful trials and is now ready for commercial operations. The 60-megawatt plant will be the largest compressed air energy storage plant built anywhere in the world since 1991, and the first in China outside of small-scale technology demonstration projects, as China's electricity demand patterns remain in flux, according to BloombergNEF.

The plant will use electricity at night when demand is low to pump air into an underground salt cavern. Then, when demand is high during the day, it can release the compressed air at high enough pressure to spin a turbine and produce electricity, aligning with projections that 60% electricity by 2060 could be reached according to industry outlooks.

Underground compressed air is considered one of the least costly forms of long-term energy storage and has low safety concerns, according to BloombergNEF. But its reliance on certain topographical features such as underground caverns may limit wider deployment, a challenge shared by other regions weighing large-scale storage options for reliability. It’s gained a foothold in China, with nearly four gigawatts of projects in the pipeline, while there are less than two gigawatts combined planned in the rest of the world. Shandong province said just this week in this year's work plan that it would build three projects using the technology.

The Jintan salt caves in Jiangsu, China’s second-biggest provincial economy just north of Shanghai, can store about 10 million cubic meters of gas, enough to power four gigawatts of compressed air plants, according to a Science and Technology Daily report from last year. 

Energy storage is a key part of China’s plan to build a larger and more flexible grid as it tries to peak carbon emissions before 2030 and zero them out before 2060, alongside continued nuclear energy development to stabilize baseload supply. The country is adding a world-leading amount of wind and solar power every year, but their intermittency strains grids that need to be able to deliver electricity all the time, spurring interest in green hydrogen as a flexible complement. China has set targets of 30 gigawatts of new-energy storage by 2025 and 120 gigawatts of pumped hydro storage by 2030. 

 

Related News

View more

Canada is a solar power laggard, this expert says

Canada Distributed Energy faces disruption as solar, smart grids, microgrids, and storage scale utility-scale renewables, challenging centralized utilities and accelerating decarbonization, grid modernization, and distributed generation across provinces like Alberta.

 

Key Points

Canada Distributed Energy shifts from centralized grids to local solar, wind, and storage for reliable low-carbon power.

✅ Morgan Solar and Enbridge launch Alberta Solar One, 13.7 MW.

✅ Optical films boost panel efficiency, lowering cost per watt.

✅ Strong utilities slow adoption of microgrids and smart grids.

 

By Nick Waddell

Disruption is coming to electricity generation but Canada has become a laggard when it comes to not just adoption of alternative energy sources but in moving to a more distributed model of electricity generation. That’s according to Mike Andrade, CEO of Morgan Solar, whose new solar project in conjunction with Enbridge has just come online in Alberta, a province known as a powerhouse for both green and fossil energy in Canada.

“There’s a lot of inertia to Canada’s electrical system and I don’t think that bodes well,” said Andrade, who spoke on BNN Bloomberg on Thursday. 

“Canada is one of the poorest places for uptake of solar, as NEB data on solar demand indicates,” Andrade said, “I believe a lot of it has to do with the fact that we have strong provincial utilities that have their mandates and their chosen technologies.”

Alberta Solar One, a 13.7 MW power facility near Lethbridge, Alberta, had its unveiling this week amid red-hot solar growth in Alberta that shows no sign of slowing. It’s a 36,500-panel farm constructed by Enbridge in a quick six-month turnaround as part of the power company’s pledge to become a carbon-free generator by 2050. Along with solar, Enbridge has made big investments in offshore and onshore wind farms in the United States, while also producing so-called green hydrogen at an Ontario plant.

Private company Morgan Solar considers the Alberta Solar One project as the first utility-scale validation of its technology, which uses optical films to redirect light onto photovoltaic cells to further power production. 

“We use an advanced modelling system and a variety of tools to design very simple optical systems that can be easily inserted into a panel,” Andrade said. “They cost less and bring down the cost per watt. It captures light that would otherwise miss the cells and so you get more power per cell area than any other commercial technology at this point.”

Like renewables in general, solar energy has been thrust into the spotlight as governments worldwide aim to make good on their climate change and emissions pledges, with analyses showing zero-emissions electricity by 2035 is possible in Canada, and convert power generation from fossil fuels to alternative sources. 

The market has paid attention, too, driving up values on renewable energy stocks across the board, including solar stocks, as provinces like Alberta explore selling renewable energy into broader markets. Last year, the Invesco Solar ETF, which tracks the MAC Global Solar Energy Index, soared 234 per cent, while Canadian companies with solar assets like Algonquin Power and Northland Power have been winners over the past few years.

Canadian cleantech companies involved in the solar power sector have also fared well, with names like UGE International (UGE International Stock Quote, Chart, News, Analyst. Financials TSXV:UGE), Aurora Solar and 5N Plus (5N Plus Stock Quote, Chart, News, Analysts, Financials TSX:VNP) having attracted investor attention of late.

Currently, part of the push in alternative energy involves the move from centralized to a more distributed picture of power generation, where solar panels, wind turbines and small modular nuclear reactors can operate close to or within sources of consumption like cities.

But Andrade says Canada has a lot of catching up to do on that front, especially as its current system seems devoted to maintaining the precedence of large, centralized power production — along with the utility companies that generate it.

“Canada is going to be left with this big, old fashioned hub and spoke model, and that’s increasingly going to be out-competed by a distributed grid, call them smart grids or micro grids,” Andrade said.

“That’s the future that solar is going to drive along with storage, and I personally don’t think Canada is prepared for it, not because we can’t do it but because regulatory and incumbency is holding us back from doing that,” he said.

“We pay our utilities, saying, ‘You invest capital and we’ll give you a fixed return on capital.’ Well, guess what? You’re going to get large, centralized capital projects which are going to get big central generation hub and spoke distribution,” Andrade said.

Ahead of the Canadian federal government’s tabling next week of its first budget in two years, many in the energy sector will be taking notes on the Liberal government’s investments in the so-called green recovery after the economic downturn, with renewable energy proponents hoping for further support, noting Alberta’s renewable energy surge could power thousands of jobs, to shift Canada’s resource sector away from fossil fuels.

By comparison, President Biden in the US recently unveiled his $2-billion infrastructure plan which put precedence on greening the country’s power grid, encouraging the adoption of electric vehicles and supporting renewable resource development, and Canadian studies suggest 2035 zero-emission power is practical and profitable as well across the national grid. 

On disruption in power generation, Andrade said there are parallels to be drawn from information technology, which has historically made a point of discarded outdated models along the way.

“I was at IBM, and they had the mainframe business and that got blown up. I also worked with Nortel and Celestica and they got blown up —and it wasn’t due to having better central hub and spoke systems. They got beat up by this distributed system,” Andrade said. 

“The same thing is going to happen here and the disruption is coming in electricity generation as well,” he said.

 

About The Author - Nick Waddell

Cantech Letter founder and editor Nick Waddell has lived in five Canadian provinces and is proud of his country's often overlooked contributions to the world of science and technology. Waddell takes a regular shift on the Canadian media circuit, making appearances on CTV, CBC and BNN, and contributing to publications such as Canadian Business and Business Insider.

 

Related News

View more

ABB claims its Terra 360 is the "world's fastest electric car charger"

ABB Terra 360 EV Charger offers 360 kW DC fast charging, ultra-fast top-ups, and multi-vehicle capability for Ionity, Electrify America, and depot installations, adding 100 km in under 3 minutes with compact footprint.

 

Key Points

ABB's Terra 360 is a 360 kW DC fast charger for EVs, powering up to four vehicles simultaneously with a compact footprint.

✅ 360 kW DC output; adds 100 km in under 3 minutes

✅ Charges up to four vehicles at once; small footprint

✅ Rolling out in Europe 2021; US and beyond in 2022

 

Swiss company ABB, which supplies EV chargers to Ionity and Electrify America amid intensifying charging network competition worldwide, has unveiled what it calls the "world's fastest electric car charger." As its name suggests, the Terra 360 has a 360 kW capacity, and as electric-car adoption accelerates, it could fully charge a (theoretical) EV in 15 minutes. More realistically, it can charge four vehicles simultaneously, saving space at charging stations. 

The Terra 360 isn't the most powerful charger by much, as companies like Electrify America, Ionity and EVGo have been using 350 kW chargers manufactured by ABB and others since at least 2018. However, it's the "only charger designed explicitly to charge up to four vehicles at once," the company said. "This gives owners the flexibility to charge up to four vehicles overnight or to give a quick refill to their EVs in the day." They also have a relatively small footprint, allowing installation in small depots or parking lots, helping as US automakers plan 30,000 new chargers nationwide. 

There aren't a lot of EVs that can handle that kind of charge. The only two approaching it are Porsche's Taycan, with 270 kW of charging capacity and the new Lucid Air, which allows for up to 300 kW fast-charging. Tesla's Model 3 and Model Y EVs can charge at up to 250 kW, while Hyundai's Ioniq 5 is rated for 232 kW DC fast charging in optimal conditions. 

Such high charging levels aren't necessarily great for an EV's battery, and the broader grid capacity question looms as the American EV boom gathers pace. Porsche, for instance, has a battery preservation setting on its Plug & Charge Taycan feature that lowers power to 200 kW from the maximum 270 kW allowed — so it's essentially acknowledging that faster charging degrades the battery. On top of that, extreme charging levels don't necessarily save you much time, as Car and Driver found. Tesla recently promised to upgrade its own Supercharger V3 network from 250kW to 300kW, with energy storage solutions emerging to buffer high-power sites. 

ABB's new chargers will be able to add 100 km (62 miles) of range in less than three minutes. They'll arrive in Europe by the end of the year and start rolling out in the US and elsewhere in 2022.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Download the 2025 Electrical Training Catalog

Explore 50+ live, expert-led electrical training courses –

  • Interactive
  • Flexible
  • CEU-cerified