California Takes the Lead in Electric Vehicle and Charging Station Adoption


ev charging

CSA Z462 Arc Flash Training - Electrical Safety Essentials

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 6 hours Instructor-led
  • Group Training Available
Regular Price:
$249
Coupon Price:
$199
Reserve Your Seat Today

California EV Adoption leads the U.S., with 37% of registered electric vehicles and 27% of charging locations, spanning Level 1, Level 2, and DC Fast stations, aligned with OCPI and boosted by CALeVIP funding.

 

Key Points

California EV adoption reflects the state's leading EV registrations and growth in private charging infrastructure.

✅ 37% of U.S. EVs, 27% of charging locations in 2022

✅ CALeVIP funding boosts public charging deployment

✅ OCPI-aligned data; EVs per charger rose to 75 in CA

 

California has consistently been at the forefront of electric vehicle (EV) adoption, with EV sales topping 20% in California underscoring this trend, and the proliferation of EV charging stations in the United States, maintaining this position since 2016. According to recent estimates from our State Energy Data System (SEDS), California accounts for 37% of registered light-duty EVs in the U.S. and 27% of EV charging locations as of the end of 2022.

The vehicle stock data encompass all registered on-road, light-duty vehicles and exclude any previous vehicle sales no longer in operation. The data on EV charging locations include both private and public access stations for Legacy, Level 1, Level 2, and DC Fast charging ports, excluding EV chargers in single-family residences. There is a data series break between 2020 and 2021, when the U.S. Department of Energy updated its data to align with the Open Charge Point Interface (OCPI) international standard, reflecting changes in the U.S. charging infrastructure landscape.

In 2022, the number of registered EVs in the United States, with U.S. EV sales soaring into 2024 nationwide, surged to six times its 2016 figure, growing from 511,600 to 3.1 million, while the number of U.S. charging locations nearly tripled, rising from 19,178 to 55,015. Over the same period, California saw its registered EVs more than quadruple, jumping from 247,400 to 1.1 million, and its charging locations tripled, increasing from 5,486 to 14,822.

California's share of U.S. EV registrations has slightly decreased in recent years as EV adoption has spread across the country, with Arizona EV ownership relatively high as well. In 2016, California accounted for approximately 48% of light-duty EVs in the United States, which was approximately 12 times more than the state with the second-highest number of EVs, Georgia. By 2022, California's share had decreased to around 37%, which was still approximately six times more than the state with the second-most EVs, Florida.

On the other hand, California's share of U.S. EV charging locations has risen slightly in recent years, as charging networks compete amid federal electrification efforts and partly due to the California Electric Vehicle Infrastructure Project (CALeVIP), which provides funding for the installation of publicly available EV charging stations. In 2016, approximately 25% of U.S. EV charging locations were in California, over four times as many as the state with the second-highest number, Texas. In 2022, California maintained its position with over four times as many EV charging locations as the state with the second-most, New York.

The growth in the number of registered EVs has outpaced the growth of EV charging locations in the United States, and in 2021 plug-in vehicles traveled 19 billion electric miles nationwide, underscoring utilization. In 2016, there were approximately 27 EVs per charging location on average in the country. Alaska had the highest ratio, with 67 EVs per charging location, followed by California with 52 vehicles per location.

In 2022, the average ratio was 55 EVs per charging location in the United States, raising questions about whether the grid can power an ongoing American EV boom ahead. New Jersey had the highest ratio, with 100 EVs per charging location, followed by California with 75 EVs per location.

Related News

This Thin-Film Turns Heat Waste From Electronics Into Electricity

Pyroelectric Energy Harvesting captures low-grade heat via thin-film materials, converting temperature fluctuations into power for waste heat recovery in electronics, vehicles, and industrial machinery, offering a thermoelectric alternative for microelectronics and exascale systems.

 

Key Points

Thin-film pyroelectric harvesting turns temperature changes into electricity, enabling low-grade waste heat recovery.

✅ Converts low-grade heat fluctuations into usable power

✅ Thin-film design suits microelectronics and edge devices

✅ Alternative to thermoelectrics for waste heat recovery

 

The electronic device you are reading this on is currently producing a modest to significant amount of waste heat that emerging thermoelectric materials could help recover in principle. In fact, nearly 70% of the energy produced annually in the US is ultimately wasted as heat, much of it less than 100 degrees Celsius. The main culprits are computers and other electronic devices, vehicles, as well as industrial machinery. Heat waste is also a big problem for supercomputers, because as more circuitry is condensed into smaller and smaller areas, the hotter those microcircuits get.

It’s also been estimated that a single next-generation exascale supercomputer could feasibly use up to 10% of the energy output of just one coal-fired power station, and that nearly all of that energy would ultimately be wasted as heat.

What if it were possible to convert that heat energy into a useable energy source, and even to generate electricity at night from temperature differences as well?

#google#

It’s not a new idea, of course. In fact the possibility of thermoelectric energy generation, where thermal energy is turned into electricity was recognised as early as 1821, around the same time that Michael Faraday developed the electric motor.

Unfortunately, when the heat source is ‘low grade’, aka less than 100 degrees Celsius, a number of limitations arise, and related approaches for nighttime renewable generation face similar challenges as well. For it to work well, you need materials that have quite high electrical conductivity, but low thermal conductivity. It’s not an easy combination to come by.

Taking a different approach, researchers at the University of California, Berkeley, have developed thin-film that uses pyroelectric harvesting to capture heat-waste and convert heat to electricity in prototype demonstrations. The findings were published today in Nature Materials.

 

Related News

View more

Electric-ready ferry for Kootenay Lake to begin operations in 2023

Kootenay Lake Electric-Ready Ferry advances clean technology in BC, debuting as a hybrid diesel-electric vessel with shore power conversion planned, capacity and terminal upgrades to cut emissions, reduce wait times, and modernize inland ferry service.

 

Key Points

Hybrid diesel-electric ferry replacing MV Balfour, boosting capacity, and aiming for full electric conversion by 2030.

✅ Doubles vehicle capacity; runs with MV Osprey 2000 in summer

✅ Hybrid-ready systems installed; shore power to enable full electric

✅ Terminal upgrades at Balfour and Kootenay Bay improve reliability

 

An electric-ready ferry for Kootenay Lake is scheduled to begin operations in 2023, aligning with first electric passenger flights planned by Harbour Air, the province announced in a Sept. 3 press release.

Construction of the $62.9-million project will begin later this year, which will be carried out by Western Pacific Marine Ltd., reflecting broader CIB-supported ferry investments in B.C. underway.

“With construction beginning here in Canada on the new electric-ready ferry for Kootenay Lake, we are building toward a greener future with made-in-Canada clean technology,” said Catherine McKenna, the federal minister of infrastructure and communities.

The new ferry — which is designed to provide passengers with a cleaner vessel informed by advances in electric ships and more accessibility — will replace and more than double the capacity of the MV Balfour, which will be retired from service.

“This is an exciting milestone for a project that will significantly benefit the Kootenay region as a whole,” said Michelle Mungall, MLA for Nelson-Creston. “The new, cleaner ferry will move more people more efficiently, improving community connections and local economies.”

Up to 55 vehicles can be accommodated on the new ship, and will run in tandem with the larger MV Osprey 2000 to help reduce wait times, a strategy also seen with Washington State Ferries hybrid-electric upgrades, during the summer months.

“The vessel will be fully converted to electric propulsion by 2030, once shore power is installed and reliability of the technology advances for use on a daily basis, as demonstrated by Harbour Air's electric aircraft testing on B.C.'s coast,” said the province.

They noted that they are working to electrify their inland ferry fleet by 2040, as part of their CleanBC initiative.

“The new vessel will be configured as a hybrid diesel-electric with all the systems, equipment and components for electric propulsion,” they said.

Other planned projects include upgrades to the Balfour and Kootenay Bay terminals, and minor dredging has been completed in the West Arm.

 

Related News

View more

Biden seen better for Canada’s energy sector

Biden Impact on Canadian Energy Exports highlights shifts in trade policy, tariffs, carbon pricing, and Keystone XL, with implications for aluminum, softwood lumber, electricity trade, fracking limits, and small modular nuclear reactors.

 

Key Points

How Biden-era trade, climate rules, and tariffs may reshape Canadian energy and exports.

✅ Reduced tariff volatility and friendlier trade policy toward allies

✅ Climate alignment: carbon pricing, clean power, cross-border electricity

✅ Potential gains for oil, gas, aluminum, and softwood lumber exporters

 

There is little doubt among industry associations, the Conference Board of Canada and C.D. Howe Institute that a Joe Biden White House will be better for Canadian resource and energy exporters – even Alberta’s beleaguered oil industry, despite Biden’s promise to kill the Keystone XL pipeline.

The consensus among industry observers in the lead-up to the November 3 U.S. presidential election was that a re-elected Donald Trump would become even more pugnacious on trade and protectionism, putting electricity exports at risk for Canadian utilities, which would be bad for Canadian exporters. The Justin Trudeau government would likely come under increased pressure to lower Canadian business taxes to compete with Trump’s low-tax climate.

“A Joe Biden victory would likely lead to higher taxes for both corporations and wealthy Americans to help pay down the gigantic fiscal deficit that is currently running at plus-US$5 trillion,” the conference board concluded in a recent analysis.

On trade and tariffs, the conference board said: “Many but not all of these ongoing trade disputes would wither away under a Joe Biden administration. He would likely run a broad trade policy favouring strategic allies like Canada.

While Canadian industries like forestry and aluminum smelting benefited from strong demand and prices in the U.S. under Trump, the forced renegotiation of the North American Free Trade Agreement failed end tariffs and duties on things like softwood lumber and aluminum ingots, even as Canadians backed tariffs on energy and minerals during the dispute.

The uncertainty over trade issues, and Trump’s tax cuts, which made Canada’s tax regime less competitive, have contributed to a period of low business investment in Canada during Trump's presidency.

“For Canada, we’ve seen a period, since this administration has been in power, where investment has eroded steadily,” conference board chief economist Pedro Antunes said. “We are not doing well at all, in terms of private capital investment in Canada.”

Alberta’s oil industry has been hit particularly hard, with a slew of divestments by big energy giants, and cancellations of major projects, like the $20 billion Frontier oilsands project, scrubbed by Teck Resources.

While domestic policies and global market forces are partly to blame for falling investments in Canada’s oil and gas sector, up until the pandemic hit, investment in oil and gas increased significantly in the U.S., while declining in Canada, during Trump’s first term.

Biden is also expected to level the playing field with respect to climate change policies. Canadian industries pay carbon taxes and face regulations that their counterparts in the U.S. don’t. That has disadvantaged energy-intensive, trade-exposed industries like mines and pulp mills in Canada.

“With Biden in office, Canada will once again have a partner at the federal level in the states in the transition to a decarbonized economy,” said Josha MacNab, national policy director for the Pembina Institute.

Biden’s policies might also favour importing aluminum, cross-laminated timber, fuel cells and other lower-carbon products and commodities from Canada.

At least one observer believes that Canada’s oil and gas sector might benefit more from a Biden White House, despite Biden’s pledge to kill the Keystone XL pipeline.

“I think Joe Biden could be very good for Alberta,” Christopher Sands, director of the Wilson International Center’s Canada Institute, said in a recent discussion hosted by the C.D. Howe Institute.

Sands added that the presidential permit Biden has promised to tear up on the Keystone XL pipeline project is a construction permit, not an operating permit.

“The segment of that pipeline that crosses the U.S.-Canada border, which is the only place that the presidential permit applies, has been built,” Sands said. “So I think that’s somewhat of an empty threat.”

He added that, if Biden bans fracking on federal lands, as he has promised, and implements other restrictions that make it more costly for American oil and gas producers, it might increase the demand for Canadian oil and gas in the U.S. The demand would be highest in the U.S. Midwest, which depends largely on Marcellus Shale production, notably in Pennsylvania, and Western Canada for its oil and gas.

One of the Canadian industries directly affected by the Trump administration was aluminum smelting, which is relevant for B.C. because Rio Tinto plc’s Kitimat smelter exports aluminum to the U.S.

Jean Simard, president of the Aluminum Association of Canada, said one of Trump’s legacies was the reactivation of a little-used mechanism – Section 232 of the Trade Expansion Act – to hit Canada and other countries, notably China, with import tariffs.

The 10 per cent tariffs on aluminum cost Canadian aluminum producers US$15 million in the month of August alone, Simard said.

The Trump administration eventually exempted Canadian aluminum exports from the tariffs, then reintroduced them, and then, one week before the election, exempted them again.

These on-again, off-again tariff threats create tremendous uncertainty, not just for Canadian producers, but also for U.S. buyers. That kind of uncertainty is likely to ease under a Biden presidency.

Simard said Biden’s track record suggests he is well-disposed towards Canada and less confrontational with allies and trade partners in general, and some in Washington have called for a stronger U.S.-Canada energy partnership as well.

Meanwhile, softwood lumber tariffs have been imposed by Democrats and Republicans alike. But there are compelling reasons for ending the Canada-U.S. softwood lumber war.

Home renovation and repair in the United States has done surprisingly well during the pandemic.

As a result of sawmill curtailments in the U.S. due to pandemic restrictions and high demand for lumber in the U.S. housing sector, North American lumbers prices broke records this summer, soaring as high as US$900 per thousand board feet.

“It shows that there’s very strong demand for our product,” said Susan Yurkovich, president of the Council of Forest Industries.

Ultimately, the duties Canadian lumber exporters pay are passed on to U.S. consumers.

Sands said Biden’s climate action pledges, including a clean electricity standard, could increase opportunities for trading electricity between Canada in the U.S., as the U.S. increasingly looks to Canada for green power, and could also be good for Canadian nuclear power technology.

Strong climate change policies necessarily result in an increased demand for low-carbon electricity, and advancing clean grids, which Canada has in abundance, thanks to both hydro and nuclear power.

“[Biden] does share the desire to act on climate change, but unlike some of his fellow party members who are more signed on to a Green New Deal, he’s open to pragmatic solutions that might get the job done quickly and efficiently,” Sands said.

“This is a huge opportunity for small, modular nuclear reactors, and Atomic Energy Canada has some great designs. There’s a real opportunity for a nuclear revival.” 

 

Related News

View more

UK Electric Vehicle Sales Surge to Record High

UK electric vehicle sales reached a record high in September, with battery and hybrid cars making up over half of new registrations. SMMT credits carmaker discounts, new models, and a £3,750 EV grant for driving strong demand across the UK market.

 

Why are UK Electric Vehicle Sales Surging to a Record High?

UK electric vehicle sales are surging to a record high because automakers are offering major discounts, more models are available than ever, and the government’s new £3,750 EV grant is making electric cars more affordable and appealing to both fleets and private buyers.

✅ BEV sales up nearly one-third in September

✅ Over half of all new cars are now electrified

✅ £3,750 EV grants boost consumer confidence

 

Electric vehicle (EV) sales in the United Kingdom reached a record high last month, marking a significant milestone in the country’s transition to cleaner transportation. According to the latest figures from the Society of Motor Manufacturers and Traders (SMMT), sales of pure battery electric vehicles (BEVs) surged by nearly one-third to 72,779 units in September, while plug-in hybrid registrations grew even faster.

The combined total of fully electric and hybrid vehicles accounted for more than half of all new car registrations, underscoring the growing appeal of electrified transport, alongside global EV market growth, among both businesses and private consumers. In total, 312,887 new vehicles were registered across the country — the strongest September performance since 2020, according to SMMT data.

SMMT chief executive Mike Hawes said the surge in electrified vehicle sales showed that “electrified vehicles are powering market growth after a sluggish summer.” He credited carmaker incentives, a wider choice of models, and government support for helping accelerate adoption, though U.S. EV market share dipped in Q1 2024 by comparison. “Industry investment in electric vehicles is paying off,” Hawes added, even as he acknowledged that “consumer demand still trails ambition.”

The UK government’s new electric car grant scheme has played a significant role in the rebound. The program offers buyers discounts of up to £3,750 on eligible EVs priced under £37,000. So far, more than 20,000 motorists have benefited, with 36 models approved for reductions of at least £1,500. Participating manufacturers include Ford, Toyota, Vauxhall, and Citroën.

Ian Plummer, chief commercial officer at Autotrader, said the grant had given a “real lift to the market,” echoing fuel-crisis EV inquiry surge in the UK. He noted that “since July, enquiries for new electric vehicles on Autotrader are up by almost 50%. For models eligible for the grant, interest has more than doubled.”

While the majority of BEVs — about 71.4% — were purchased by companies and fleets, the number of private buyers has also been increasing. Zero-emission vehicles now account for more than one in five (22.1%) new car registrations so far in 2025, similar to France’s 20% EV share record, highlighting the growing mainstream appeal of electric mobility.

The surge comes amid a challenging backdrop for the automotive sector, even as U.S. EV sales soared into 2024 across the Atlantic. The UK car industry is still reeling from the effects of US trade tariffs and recent disruptions, such as Jaguar Land Rover’s production shutdown following a cyberattack. Despite these hurdles, the strong September figures have boosted confidence in the industry’s recovery trajectory, and EU EV share grew during lockdown months offers precedent for resilience.

Among individual models, the Kia Sportage, Ford Puma, and Nissan Qashqai led overall sales, while two Chinese vehicles — the Jaecoo 7 and BYD Seal U — entered the top ten, reflecting China’s growing footprint in the UK market. Analysts say the arrival of competitively priced Chinese EVs could further intensify competition and drive prices lower for consumers.

With electrified vehicles now dominating new registrations and fresh government incentives in place, industry observers believe the UK is gaining momentum toward its long-term net-zero goals. The challenge, however, remains converting business fleet enthusiasm into sustained private-buyer confidence through affordable models, with UK consumer price concerns still a factor, reliable charging infrastructure, and continued policy support.

 

Related Articles

 

View more

Electric vehicles can fight climate change, but they’re not a silver bullet: U of T study

EV Adoption Limits highlight that electric vehicles alone cannot meet emissions targets; life cycle assessment, carbon budgets, clean grids, public transit, and battery materials constraints demand broader decarbonization strategies, city redesign, and active travel.

 

Key Points

EV Adoption Limits show EVs alone cannot hit climate targets; modal shift, clean grids, and travel demand are essential.

✅ 350M EVs by 2050 still miss 2 C goals without major mode shift

✅ Grid demand rises 41%, requiring clean power and smart charging

✅ Battery materials constraints need recycling, supply diversification

 

Today there are more than seven million electric vehicles (EVs) in operation around the world, compared with only about 20,000 a decade ago. It’s a massive change – but according to a group of researchers at the University of Toronto’s Faculty of Applied Science & Engineering, it won’t be nearly enough to address the global climate crisis. 

“A lot of people think that a large-scale shift to EVs will mostly solve our climate problems in the passenger vehicle sector,” says Alexandre Milovanoff, a PhD student and lead author of a new paper published in Nature Climate Change. 

“I think a better way to look at it is this: EVs are necessary, but on their own, they are not sufficient.” 

Around the world, many governments are already going all-in on EVs. In Norway, for example, where EVs already account for half of new vehicle sales, the government has said it plans to eliminate sales of new internal combustion vehicles by 2025. The Netherlands aims to follow suit by 2030, with France and Canada's EV goals aiming to follow by 2040. Just last week, California announced plans to ban sales of new internal combustion vehicles by 2035.

Milovanoff and his supervisors in the department of civil and mineral engineering – Assistant Professor Daniel Posen and Professor Heather MacLean – are experts in life cycle assessment, which involves modelling the impacts of technological changes across a range of environmental factors. 

They decided to run a detailed analysis of what a large-scale shift to EVs would mean in terms of emissions and related impacts. As a test market, they chose the United States, which is second only to China in terms of passenger vehicle sales. 

“We picked the U.S. because they have large, heavy vehicles, as well as high vehicle ownership per capita and high rate of travel per capita,” says Milovanoff. “There is also lots of high-quality data available, so we felt it would give us the clearest answers.” 

The team built computer models to estimate how many electric vehicles would be needed to keep the increase in global average temperatures to less than 2 C above pre-industrial levels by the year 2100, a target often cited by climate researchers. 

“We came up with a novel method to convert this target into a carbon budget for U.S. passenger vehicles, and then determined how many EVs would be needed to stay within that budget,” says Posen. “It turns out to be a lot.” 

Based on the scenarios modelled by the team, the U.S. would need to have about 350 million EVs on the road by 2050 in order to meet the target emissions reductions. That works out to about 90 per cent of the total vehicles estimated to be in operation at that time. 

“To put that in perspective, right now the total proportion of EVs on the road in the U.S. is about 0.3 per cent,” says Milovanoff. 

“It’s true that sales are growing fast, but even the most optimistic projections of an electric-car revolution suggest that by 2050, the U.S. fleet will only be at about 50 per cent EVs.” 

The team says that, in addition to the barriers of consumer preferences for EV deployment, there are technological barriers such as the strain that EVs would place on the country’s electricity infrastructure, though proper grid management can ease integration. 

According to the paper, a fleet of 350 million EVs would increase annual electricity demand by 1,730 terawatt hours, or about 41 per cent of current levels. This would require massive investment in infrastructure and new power plants, some of which would almost certainly run on fossil fuels in some regions. 

The shift could also impact what’s known as the demand curve – the way that demand for electricity rises and falls at different times of day – which would make managing the national electrical grid more complex, though vehicle-to-grid strategies could help smooth peaks. Finally, there are technical challenges stemming from the supply of critical materials for batteries, including lithium, cobalt and manganese. 

The team concludes that getting to 90 per cent EV ownership by 2050 is an unrealistic scenario. Instead, what they recommend is a mix of policies, rather than relying solely on a 2035 EV sales mandate as a singular lever, including many designed to shift people out of personal passenger vehicles in favour of other modes of transportation. 

These could include massive investment in public transit – subways, commuter trains, buses – as well as the redesign of cities to allow for more trips to be taken via active modes such as bicycles or on foot. They could also include strategies such as telecommuting, a shift already spotlighted by the COVID-19 pandemic. 

“EVs really do reduce emissions, which are linked to fewer asthma-related ER visits in local studies, but they don’t get us out of having to do the things we already know we need to do,” says MacLean. “We need to rethink our behaviours, the design of our cities, and even aspects of our culture. Everybody has to take responsibility for this.” 

The research received support from the Hatch Graduate Scholarship for Sustainable Energy Research and the Natural Sciences and Engineering Research Council of Canada.

 

Related News

View more

CEC Allocates $30 Million for 100-Hr Long-Duration Energy Storage Project

California Iron-Air Battery Storage Project delivers 100-hour long-duration energy storage, supported by a $30 CEC grant, using Form Energy technology at a PG&E substation to boost grid reliability, integrate renewables, and cut fossil reliance.

 

Key Points

California's 5 MW/500 MWh iron-air battery delivers 100-hour discharge, boosting reliability and renewable integration.

✅ 5 MW/500 MWh iron-air system at a PG&E substation

✅ 100-hour multiday storage enhances grid reliability

✅ CEC $30M grant backs non-lithium, long-duration tech

 

The California Energy Commission (CEC) has given the green light to a $30 million grant to Form Energy for the construction of an extraordinary long-duration energy storage project that will offer an unparalleled 100 hours of continuous grid discharge.

This ambitious endeavor involves the development of a 5-megawatt (MW) / 500 megawatt-hour iron-air battery storage project, representing the largest long-duration energy storage initiative in California. It also marks the state's inaugural utilization of this cost-effective technology, and joins ongoing procurements by utilities such as San Diego Gas & Electric to expand storage capacity statewide. The project's location is set at a substation owned by the Pacific Gas and Electric Company in Mendocino County, where it will supply power to local residents. The system is scheduled to commence operation by the conclusion of 2025, contributing to grid reliability and showcasing solutions aligned with the state's climate and clean energy objectives.

CEC Chair David Hochschild commented, "A multiday battery system is transformational for California's energy mix. This project will enhance our ability to harness excess renewables during nonpeak hours for use during peak demand, especially as we work toward a goal of 100 percent clean electricity."

This grant award represents one of three approvals within the framework of the CEC's Long-Duration Energy Storage program, a part of Governor Gavin Newsom's historic multi-billion-dollar commitment to combat climate change. This program fosters investment in the demonstration of non-lithium-ion technologies across the state, including green hydrogen microgrids, contributing to the creation of a diverse portfolio of energy storage technologies.

As of August, California had 6,600 MW of battery storage actively deployed statewide, a trend mirrored in regions like Ontario as well, operating within the prevailing industry standard of 4 to 6 hours of discharge. By year-end, this figure is projected to expand to 8,600 MW. Longer-duration storage, spanning from 8 to 100 hours, holds the potential to expedite the state's shift away from fossil fuels while reinforcing grid stability. California estimates that more than 48 gigawatts (GW) of battery storage and 4 GW of long-duration storage will be requisite to achieve the objective of 100 percent clean electricity by 2045.

Energy storage serves as a cornerstone of California's clean energy future, offering a means to capture and store surplus power generated by renewable resources, including emerging virtual power plant models that aggregate distributed assets. The state's battery infrastructure plays a pivotal role during the summer when electricity demand peaks in the early evening hours as solar resources decline, preceding the later surge in wind energy.

Iron-air battery technology operates on the principle of reversible rusting. These battery cells contain iron and air electrodes and are filled with a water-based, nonflammable electrolyte solution. During discharge, the battery absorbs oxygen from the air, converting iron metal into rust. During the charging phase, the application of an electrical current converts the rust back into iron, releasing oxygen. This technology is cost-competitive compared to lithium-ion battery production and complements broader clean energy BESS initiatives seen in New York.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Download the 2025 Electrical Training Catalog

Explore 50+ live, expert-led electrical training courses –

  • Interactive
  • Flexible
  • CEU-cerified