First phase of largest higher education solar power project completed

By Macroworld Investor


Protective Relay Training - Basic

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$699
Coupon Price:
$599
Reserve Your Seat Today
Chevron Energy Solutions and the Contra Costa Community College District (CCCCD) have announced the completion of the first phase of the largest solar power installation ever constructed for an institution of higher learning in North America. The project is the highlight of a multi-facility energy efficiency and solar program that is expected to save CCCCD more than $70 million over 25 years.

The state-of-the-art energy infrastructure upgrades - designed, engineered and constructed by Chevron Energy Solutions - make CCCCD's three college campuses and District Office more energy efficient, reliable and environmentally friendly as well as easier to manage. At the same time, the improvements are reducing the District's energy costs and its exposure to utility price volatility.

The program includes three types of improvements:

1. a 3.2-megawatt solar power generation system comprising photovoltaic panels mounted on 34 parking canopies in six parking lots at Contra Costa College, Diablo Valley College and Los Medanos College (the project's first phase, at 2.65 megawatts, is completed; the final phase will add 534 kilowatts in 2008);

2. high-efficiency lighting and energy management systems installed at CCCCD's three colleges and District Office, as well as high-efficiency heating, ventilation and air-conditioning equipment at CCCCD's District Office; and

3. high-voltage electrical system replacements installed at Diablo Valley College and Los Medanos College.

“This project has shown that energy efficiency and renewable power together can bring substantial benefits for education and the environment,” said Jim Davis, president of Chevron Energy Solutions. “We're delighted to partner with the District on a project that's raised the bar in sustainable energy development.”

The solar installation is expected to generate about four million kilowatt-hours of power each year, supplying up to half of CCCCD's peak electricity needs. This renewable power will offset the production of about 5.6 million pounds of carbon dioxide emissions annually - equivalent to removing 629 cars from the road or planting 636 acres of trees.

The project was celebrated at an event attended by elected and college officials, students, faculty and staff, energy industry representatives and members of the community.

“Chevron's environmental leadership and work with the Contra Costa Community College District solar project is a shining example of how businesses can work with colleges to adapt and become a major player in the fight against global warming,” said California Lieutenant Governor John Garamendi. “Thinking green can no longer be a choice when looking toward the future. Smart businesses and colleges are looking over the horizon, building partnerships, and understand that the risks and opportunity associated with this critical issue must be part of their overall plan to grow and to be successful in the future.”

“The installation of solar panels and efficiency improvements at our three colleges underscores the District's commitment to improving the environment,” said Contra Costa Community College District Chancellor Helen Benjamin. “We are proud to set this new standard in environmental stewardship in our academic community.”

The improvements are providing the following additional benefits:

- more conducive learning, teaching, and workplace environments;

- electrical equipment that functions more reliably as a result of new electrical infrastructure;

- reduced grid power purchases of 7.4 million kilowatt-hours per year, enough to power about 1,200 homes;

- shaded daytime parking and improved parking lot lighting at night;

- solar information kiosks that provide real-time data on the production, conversion and electricity output at each campus; and

better operations through energy management system controls and real-time monitoring of energy production and consumption.

The $35.2 million project cost is being offset by about $8.5 million in rebates and other incentives administered by Pacific Gas and Electric Company under the State of California's Solar Initiative, Self-Generation Incentive Program and Community College Partnership Program. The net amount of $26.7 million, supported by Measure A bond funds, will be recovered over time by the annual cost savings achieved as a result of the new systems.

Related News

Enel Starts Operations of 450 MW Wind Farm in U.S

High Lonesome Wind Farm powers Texas with 500 MW of renewable energy, backed by a 12-year PPA with Danone North America and a Proxy Revenue Swap, cutting CO2 emissions as Enel's largest project to date.

 

Key Points

A 500 MW Enel wind project in Texas, supplying renewable power via PPAs and hedged by a Proxy Revenue Swap.

✅ 450 MW online; expanding to 500 MW in early 2020

✅ 12-year PPA with Danone North America for 20.6 MW

✅ PRS hedge with Allianz and Nephila stabilizes revenues

 

Enel, through its US renewable subsidiary Enel Green Power North America, Inc. (“EGPNA”), has started operations of its 450 MW High Lonesome wind farm in Upton and Crockett Counties, in Texas, the largest operational wind project in the Group’s global renewable portfolio, alongside a recent 90 MW Spanish wind build in its European pipeline. Enel also signed a 12-year, renewable energy power purchase agreement (PPA) with food and beverage company Danone North America, a Public Benefit Corporation, for physical delivery of the renewable electricity associated with 20.6 MW, leading to an additional 50 MW expansion of High Lonesome that will increase the plant’s total capacity to 500 MW. The construction of the 50 MW expansion is currently underway and operations are due to start in the first quarter of 2020.

“The start of operations of Enel’s largest wind farm in the world marks a significant achievement for our company and reinforces our global commitment to accelerated renewable energy growth,” said Antonio Cammisecra, CEO of Enel Green Power, referencing the largest wind project constructed in North America as evidence of market momentum. “This milestone is matched with a new partnership with Danone North America to support their renewable goals, a reinforcement of our continued commitment to provide customers with tailored solutions to meet their sustainability goals.”

The agreement between Enel and Danone North America will provide enough electricity to produce the equivalent of almost 800 million cups of yogurt1 and over 80 million gallons2 of milk each year and support the food and beverage company’s commitment to securing 100% of its purchased electricity from renewable sources by 2030, in a market where North Carolina’s first wind farm is now fully operational and expanding access to clean power.

Mariano Lozano, president and CEO of Danone North America, added:“This is an exciting and significant step as we continue to advance our 2030 renewable electricity goals. As a public benefit corporation committed to balancing the needs of our business with those of society and the planet, we truly believe that this agreement makes sense from both a business and sustainability point of view. We’re delighted to be working with Enel Green Power to expand their High Lonesome wind farm and grow the renewable electricity infrastructure, such as New York’s biggest offshore wind projects, here in the US.”

In addition, as more US wind projects come online, such as TransAlta’s 119 MW project, the energy produced by a 295 MW portion of the project will be hedged under a Proxy Revenue Swap (PRS) with insurer Allianz Global Corporate & Specialty, Inc.'s Alternative Risk Transfer unit (Allianz), and Nephila Climate, a provider of weather and climate risk management products. The PRS is a financial derivative agreement designed to produce stable revenues for the project regardless of power price fluctuations and weather-driven intermittency, hedging the project from this kind of risk in addition to that associated with price and volume.

Under the PRS agreement, and as other projects begin operations, like Building Energy’s latest plant, High Lonesome will receive fixed payments based on the expected value of future energy production, with adjustments paid depending on how the realized proxy revenue of the project differs from the fixed payment. The PRS for High Lonesome, which is the largest by capacity for a single plant globally and the first agreement of its kind for Enel, was executed in collaboration with REsurety, Inc.

The investment in the construction of the 500 MW plant amounts to around 720 million US dollars. The wind farm is due to generate around 1.9 TWh annually, comparable to a 280 MW Alberta wind farm’s output, while avoiding the emission of more than 1.2 million tons of CO2 per year.

 

Related News

View more

Company Becomes UK's Second-Largest Electricity Operator

Second-Largest UK Grid Operator advancing electricity networks modernization, smart grid deployment, renewable integration, and resilient distribution, leveraging acquisitions, data analytics, and infrastructure upgrades to boost reliability, efficiency, and service quality across regions and energy sector.

 

Key Points

A growing electricity networks operator advancing smart grids, renewable integration, and reliability.

✅ Expanded via acquisitions and regional growth

✅ Investing in smart grid, data analytics, automation

✅ Enhancing reliability, resilience, renewable integration

 

In a significant shift within the UK’s energy sector, a major company has recently ascended to become the second-largest electricity networks operator in the country. This milestone marks a pivotal moment in the industry, reflecting ongoing changes and competitive dynamics in the energy landscape, such as the shift toward an independent system operator in Great Britain. The company's ascent underscores its growing influence and its role in shaping the future of energy distribution across the UK.

The company, whose identity is a result of strategic acquisitions and operational expansions, now holds a substantial position within the electricity networks sector. This new ranking is the result of a series of investments and strategic moves aimed at strengthening its network capabilities and, amid efforts to fast-track grid connections across the UK, expanding its geographical reach. By achieving this status, the company is set to play a crucial role in managing and maintaining the electricity infrastructure that serves millions of households and businesses across the UK.

The rise to the second-largest position follows a period of significant growth and transformation for the company. Recent acquisitions have enabled it to enhance its network infrastructure, integrate advanced technologies, adopting a more digital grid approach, and improve service delivery. These developments come at a time when the UK is undergoing a significant transition in its energy sector, driven by the need for modernization, sustainability, and resilience in response to evolving energy demands.

One of the key factors contributing to the company's new status is its focus on upgrading and expanding its electricity networks. Investments in modernizing infrastructure, such as the commissioning of a 2GW substation to boost capacity, incorporating smart grid technologies, and enhancing operational efficiencies have been central to its strategy. By leveraging cutting-edge technology and data analytics, the company is able to optimize network performance, reduce outages, and improve overall reliability.

The company’s expansion into new regions has also played a crucial role in its growth. By extending its network coverage, including assets like the London electricity tunnel that enhance supply routes, the company has been able to provide electricity to a larger customer base, increasing its market share and influence in the sector. This expansion not only enhances its position as a major player in the industry but also supports the broader goal of ensuring reliable and efficient electricity distribution across the UK.

The shift to becoming the second-largest operator also reflects broader trends in the UK energy sector. The industry is experiencing a period of consolidation and transformation, driven by regulatory changes, technological advancements, and the push towards decarbonization, with similar momentum seen in British Columbia's clean energy shift that underscores global trends. The company’s ascent is indicative of these broader dynamics, as firms adapt to new challenges and opportunities in a rapidly evolving market.

In addition to operational and strategic advancements, the company’s rise is aligned with the UK’s broader energy goals. The government has set ambitious targets for reducing carbon emissions and increasing the use of renewable energy sources. As a major electricity networks operator, the company is positioned to support these goals by integrating renewable energy into the grid, including projects like the Scotland-to-England subsea link that carry remote generation, enhancing energy efficiency, and contributing to the transition towards a low-carbon energy system.

The company’s new status also brings with it a range of responsibilities and opportunities. As one of the largest operators in the sector, it will have a significant role in shaping the future of electricity distribution in the UK. This includes addressing challenges such as grid reliability, energy security, and the integration of emerging technologies. The company’s ability to manage these responsibilities effectively will be crucial in ensuring that it continues to deliver value to customers and stakeholders.

The transition to becoming the second-largest operator is not without its challenges. The company will need to navigate a complex regulatory environment, manage stakeholder expectations, and address any operational issues that may arise from its expanded network. Additionally, the competitive nature of the energy sector means that the company will need to continuously innovate and adapt to maintain its position and drive further growth.

In summary, the company’s achievement of becoming the second-largest electricity networks operator in the UK represents a significant milestone in the energy sector. Through strategic acquisitions, infrastructure investments, and operational enhancements, the company has strengthened its position and expanded its reach. This development highlights the evolving landscape of the UK energy sector and underscores the importance of modernization and innovation in meeting the country’s energy needs. As the company moves forward, it will play a key role in shaping the future of electricity distribution and supporting the UK’s energy transition goals.

 

Related News

View more

Trump's Proposal to Control Ukraine's Nuclear Plants Sparks Controversy

US Control of Ukraine Nuclear Plants sparks debate over ZNPP, Zaporizhzhia, sovereignty, safety, ownership, and international cooperation, as Washington touts utility expertise, investment, and modernization to protect critical energy infrastructure amid conflict.

 

Key Points

US management proposal for Ukraine's nuclear assets, notably ZNPP, balancing sovereignty, safety, and investment.

✅ Ukraine retains ownership; any transfer requires parliament approval.

✅ ZNPP safety risks persist amid occupation near active conflict.

✅ International reactions split: sovereignty vs. cooperation and investment.

 

In a recent phone call with Ukrainian President Volodymyr Zelenskyy, U.S. President Donald Trump proposed that the United States take control of Ukraine's nuclear power plants, including the Zaporizhzhia Nuclear Power Plant (ZNPP), which has been under Russian occupation since early in the war and where Russia is reportedly building power lines to reactivate the plant amid ongoing tensions. Trump suggested that American ownership of these plants could be the best protection for their infrastructure, a proposal that has sparked controversy in policy circles, and that the U.S. could assist in running them with its electricity and utility expertise.

Ukrainian Response

President Zelenskyy promptly addressed Trump's proposal, stating that while the conversation focused on the ZNPP, the issue of ownership was not discussed. He emphasized that all of Ukraine's nuclear power plants belong to the Ukrainian people and that any transfer of ownership would require parliamentary approval . Zelenskyy clarified that while the U.S. could invest in and help modernize the ZNPP, ownership would remain with Ukraine.

Security Concerns

The ZNPP, Europe's largest nuclear facility, has been non-operational since its occupation by Russian forces in 2022. The plant's location near active conflict zones raises significant safety risks that the IAEA has warned of in connection with attacks on Ukraine's power grids, and its future remains uncertain. Ukrainian officials have expressed concerns about potential Russian provocations, such as explosions, especially after UN inspectors reported mines at the Zaporizhzhia plant near key facilities, if and when Ukraine attempts to regain control of the plant.

International Reactions

The proposal has elicited mixed reactions both within Ukraine and internationally. Some Ukrainian officials view it as an opportunistic move by the U.S. to gain control over critical infrastructure, while others see it as a potential avenue for modernization and investment, alongside expanding wind power that is harder to destroy in wartime. The international community remains divided on the issue, with some supporting Ukraine's sovereignty over its nuclear assets and others advocating for a possible agreement on power plant attacks to ensure the plant's safety and future operation.

President Trump's proposal to have the U.S. take control of Ukraine's nuclear power plants has sparked significant controversy. While the U.S. offers expertise and investment, Ukraine maintains that ownership of its nuclear assets is a matter of national sovereignty, even as it has resumed electricity exports to bolster its economy. The situation underscores the complex interplay between security, sovereignty, and international cooperation in conflict zones.

 

Related News

View more

Hydro wants B.C. residents to pay an extra $2 a month for electricity

BC Hydro Rate Increase proposes a 2.3% hike from April, with BCUC review, aligning below inflation and funding clean energy, electrification, and grid upgrades across British Columbia while keeping electricity prices among North America's lowest.

 

Key Points

A proposed 2.3% BC Hydro hike from April, under BCUC review, funds clean energy and keeps average bills below inflation.

✅ Adds about $2 per month to average residential bill

✅ Sixth straight increase below inflation since 2018

✅ Supports renewable projects and grid modernization

 

The British Columbia government says the province’s Crown power utility is applying for a 2.3-per-cent rate increase starting in April, with higher BC Hydro rates previously outlined, adding about $2 a month to the average residential bill.

A statement from the Energy Ministry says it’s the sixth year in a row that BC Hydro has applied for an increase below the rate of inflation, similar to a 3 per cent rise noted in a separate approval, which still trailed inflation.

It says rates are currently 15.6 per cent lower than the cumulative rate of inflation over the last seven years, starting in 2017-2018, with a provincial rate freeze among past measures, and 12.4 per cent lower than the 10-year rates plan established by the previous government in 2013.

The ministry says the “modest” rate increase application comes after consideration of a variety of options and their long-term impacts, including scenarios like a 3.75% two-year path evaluated alongside others, and the B.C. Utilities Commission is expected to decide on the plan by the end of February.

Chris O’Riley, president of BC Hydro, says the rates application would keep electricity costs in the province among the lowest in North America, even as a BC Hydro fund surplus prompted calls for changes, while supporting investments in clean energy to power vehicles, homes and businesses.

Energy Minister Josie Osborne says it’s more important than ever to keep electricity bills down, especially as Ontario hydro rates increase in a separate jurisdiction, as the cost of living rises at rates that are unsustainable for many.

“Affordable, stable BC Hydro rates are good for people, businesses and climate as we work together to power our growing economy with renewable energy instead of fossil fuels,” Osborne says in a statement issued Monday.

Earlier this year, the ministry said BC Hydro provided $315 million in cost-of-living bill credits, while in another province Manitoba Hydro scaled back an increase to ease pressure, to families and small businesses in the province, including those who receive their electricity service from FortisBC or a municipal utility.

 

Related News

View more

There's a Russia-Sized Mystery in China's Electricity Sector

China Power Demand-Emissions Gap highlights surging grid demand outpacing renewables, with coal filling shortages despite record solar, wind, EV charging, and hydrogen growth, threatening decarbonization targets and net-zero pathways through 2030.

 

Key Points

China's power demand outpaces renewables, keeping coal dominant and raising emissions risk through the 2020s.

✅ Record solar and wind still lag fast grid demand growth

✅ Coal fills gaps as EV charging and hydrogen loads rise

✅ Forecasts diverge: CEC bullish vs IEA, BNEF conservative

 

Here’s a new obstacle that could prevent the world finally turning the corner on climate change: Imagine that over the coming decade a whole new economy the size of Russia were to pop up out of nowhere. With the world’s fourth-largest electricity sector and largest burden of power plant emissions after China, the U.S. and India, this new economy on its own would be enough to throw out efforts to halt global warming — especially if it keeps on growing through the 2030s.

That’s the risk inherent in China’s seemingly insatiable appetite for grid power, as surging electricity demand is putting systems under strain worldwide.

From the cracking pace of renewable build-out last year, you might think the country had broken the back of its carbon addiction. A record 55 gigawatts of solar power and 48 gigawatts of wind were connected — comparable to installing the generation capacity of Mexico in less than 12 months. This year will see an even faster pace, with 93 GW of solar and 50 GW of wind added, according to a report last week from the China Electricity Council, an industry association.

That progress could in theory see the country’s power sector emissions peak within months, rather than the late-2020s date the government has hinted at. Combined with a smaller quantity of hydro and nuclear, low-emissions sources will probably add about 310 terawatt-hours to zero-carbon generation this year. That 3.8% increase would be sufficient to power the U.K.

Countries that have reached China’s levels of per-capita electricity consumption (already on a par with most of Europe) typically see growth rates at less than half that level, even as global power demand has surged past pre-pandemic levels in recent years. Grid supply could grow at a faster pace than Brazil, Iran, South Korea or Thailand managed over the past decade without adding a ton of additional carbon to the atmosphere.

There’s a problem with that picture, however. If electricity demand grows at an even more headlong pace, there simply won’t be enough renewables to supply the grid. Fossil fuels, overwhelmingly coal, will fill the gap, a reminder of the iron law of climate dynamics in energy transitions.

Such an outcome looks distinctly possible. Electricity consumption in 2021 grew at an extraordinary rate of 10%, and will increase again by between 5% and 6% this year, according to the CEC. That suggests the country is on pace to match the CEC’s forecasts of bullish grid demand over the coming decade, with generation hitting 11,300 terawatt-hours in 2030. External analysts, such as the International Energy Agency and BloombergNEF, envisage a more modest growth to around 10,000 TWh. 

The difference between those two outlooks is vast — equivalent to all the electricity produced by Russia or Japan. If the CEC is right and the IEA and BloombergNEF are wrong, even the furious rate of renewable installations we’re seeing now won’t be enough to rein in China’s power-sector emissions.

Who’s correct? On one hand, it’s fair to say that power planners usually err on the side of overestimation. If your forecast for electricity demand is too high, state-owned generators will be less profitable than they otherwise would have been — but if it’s too low, you’ll see power cuts and shutdowns like China witnessed last autumn, with resulting power woes affecting supply chains beyond its borders.

On the other hand, the decarbonization of China’s economy itself should drive electricity demand well above what we’ve seen in the past, with some projections such as electricity meeting 60% of energy use by 2060 pointing to a profound shift. Some 3.3 million electric vehicles were sold in 2021 and BloombergNEF estimates a further 5.7 million will be bought in 2022. Every million EVs will likely add in the region of 2 TWh of load to the grid. Those sums quickly mounts up in a country where electric drivetrains are taking over a market that shifts more than 25 million new cars a year.

Decarbonizing industry, a key element on China’s road to zero emissions, could also change the picture. The IEA sees the country building 25 GW of electolysers to produce hydrogen by 2030, enough to consume some 200 TWh on their own if run close to full-time.

That’s still not enough to justify the scale of demand being forecast, though. China is already one of the least efficient countries in the world when it comes to translating energy into economic growth, and despite official pressure on the most wasteful, so called “dual-high” industries such as steel, oil refining, glass and cement, its targets for more thrifty energy usage remain pedestrian.

The countries that have decarbonized fastest are those, such as Germany, the U.K and the U.S., where Americans are using less electricity, that have seen power demand plateau or even decline, giving new renewable power a chance to swap out fossil-fired generators without chasing an ever-increasing burden on the grid. China’s inability to do this as its population peaks and energy consumption hits developed-country levels isn’t a sign of strength.

Instead, it’s a sign of a country that’s chronically unable to make the transition away from polluting heavy industry and toward the common prosperity and ecological civilization that its president keeps promising. Until China reins in that credit-fueled development model, the risks to its economy and the global climate will only increase.

 

Related News

View more

Buyer's Remorse: Questions about grid modernization affordability

Grid Modernization drives utilities to integrate DER, AMI, and battery storage while balancing reliability, safety, and affordability; regulators pursue cost-benefit analyses, new rate design, and policy actions to guide investment and protect customer-owned resources.

 

Key Points

Upgrading the grid to manage DER with digital tools, while maintaining reliability, safety, and customer affordability.

✅ Cost-benefit analyses guide prudent grid investments

✅ AMI and storage deployments enable DER visibility and control

✅ Rate design reforms support customer-owned resources

 

Utilities’ pursuit of a modern grid, including the digital grid concept, to maintain the reliability and safety pillars of electricity delivery has raised a lot of questions about the third pillar — affordability.

Utilities are seeing rising penetrations of emerging technologies, highlighted in recent grid edge trends reports, like distributed solar, behind-the-meter battery storage, and electric vehicles. These new distributed energy resources (DER) do not eliminate utilities' need to keep distribution systems safe and reliable.

But the need for modern tools to manage DER imposes costs on utilities, prompting calls to invest in smarter infrastructure even as some regulators, lawmakers and policymakers are concerned those costs could drive up electricity rates.

The result is an increasing number of legislative and regulatory grid modernization actions aimed at identifying what is necessary to serve the coming power sector transformation and address climate change risks across the grid.

 

The rise of grid modernization

Grid modernization, which is supported by both conservatives and distributed energy resources advocates, got a lot of attention last year. According to the 2017 review of grid modernization policy by the North Carolina Clean Energy Technology Center (NCCETC), 288 grid modernization policy actions were proposed, pending or enacted in 39 states.

These numbers from NCCETC's first annual review of policy activity set a benchmark against which future years' activity can be measured.

The most common type of state actions, by far, were those that focused on the deployment of advanced metering infrastructure (AMI) and battery energy storage. Those are two of the 2017 trends identified in NCCETC’s 50 States of Grid Modernization report. But deployment of those technologies, while foundational to an updated grid, only begins to prepare distribution systems for the coming power sector transformation.

Bigger advances, including the newest energy system management tools, are being held back by 2017’s other policy actions requiring more deliberation and fact-finding, even as grid vulnerability report cards underscore the risks that modernization seeks to mitigate.

Utilities’ proposals to more fully prepare their grids to deliver 21st century technologies are being met with questions about completeness and cost.

Utilities are being asked to address these questions in comprehensive, public utility commission-led cost-benefit analyses and studies. This is also one of NCCETC’s top 2017 policy action trends for grid modernization. The outcome to date appears to be an increased, but still incomplete, understanding of what is needed to build a 21st century grid.

Among the top objectives of those driving the policy actions are resolving questions about private sector participation in grid modernizaton buildouts and developing new rate designs to protect and support customer-owned distributed energy resources. Actions on those topics are also on NCCETC’s list of 2017 policy trends.

Altogether, the trend list is dominated by actions that do not lead to completion of grid modernization but to more work on it.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.