Michigan solar supporters make new push to eliminate rooftop solar caps


solar workers

Protective Relay Training - Basic

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$699
Coupon Price:
$599
Reserve Your Seat Today

Michigan Distributed Energy Cap Repeal advances a bipartisan bill to boost rooftop solar and net metering, countering DTE and Consumers Energy claims, expanding energy freedom, jobs, and climate resilience across investor-owned utility territories.

 

Key Points

A Michigan bill to remove the 1% distributed energy cap, expanding rooftop solar, net metering, and clean energy jobs.

✅ Removes 1% distributed generation cap statewide

✅ Supports rooftop solar, net metering, and job growth

✅ Counters utility cost-shift claims with updated tariffs

 

A bipartisan group of Michigan lawmakers has introduced legislation to eliminate a 1% cap on distributed energy in the state’s investor-owned utility territories.

It’s the third time in recent years that such legislation has been introduced. Though utilities and their political allies have successfully blocked it to date, through tactics some critics say reflect utilities tilting the solar market by incumbents, advocates see an opportunity with a change in state Republican caucus leadership and Michigan’s burgeoning solar industry approaching the cap in some utility territories.

The bill also has support from a broad swath of legislators for reasons having to do with job creation, energy freedom and the environment, amid broader debates over states' push for renewables and affordability. Already the bill has received multiple hearings, even as DTE Energy and Consumers Energy, Michigan’s largest private utilities, are ramping up attacks in an effort to block the bill. 

“It’s going to be vehemently opposed by the utilities but there are only benefits to this if you are anybody but DTE,” said Democratic state Rep. Yousef Rabhi, who cosigned HB 4236 and has helped draft language in previous bills. “If we remove the cap, then we’re putting the public’s interest first, and we’re putting DTE’s interest first if we keep the cap in place.” 

The Michigan Legislature enacted the cap as part of a sweeping 2016 energy bill that clean energy advocates say included a number of provisions that have kneecapped the small-scale distributed energy industry, particularly home solar. The law caps distributed energy production at 1% of a utility’s average in-state peak load for the past five years. 

Republicans have controlled the Legislature and committees since the law was enacted, amid parallel moves such as the Wyoming clean energy bill in another state, and previous attempts to cut the language haven’t received House committee hearings. However, former Republican House leader Lee Chatfield has been replaced, and already the new bill, introduced by Republican state Rep. Gregory Markkanen, the energy committee’s vice chair, has had two hearings. 

Previous attempts to cut the language were also a part of a larger package of bills, and this time around the bill is a standalone. The legislation is also moving as Consumers and Upper Peninsula Power Co. have voluntarily doubled their cap to two percent, which advocates say highlights the need to repeal the cap . 

Rabhi said there’s bipartisan support because many conservatives and progressives view it as an infringement on customers’ energy freedom since the cap will eventually effectively prohibit new distributed energy generation. Legislators say the existing law kills jobs because it severely limits the clean energy industry’s growth, and Rabhi said he’s also strongly motivated by increasing renewable energy production to address climate change. 

In February, Michigan Public Service Commission Chairman Dan Scripps testified to the House committee, with observers also pointing to FERC action on aggregated DERs as relevant context, that the commission is “supportive in taking steps to ensure solar developers in Michigan are able to continue operating and thus support in concept the idea of lifting or eliminating the cap” in order to protect the home solar industry. 

The state’s solar industry has long criticized the cap, and removing it is a “no brainer,” said Dave Strenski, executive director of Solar Ypsi, which promotes rooftop solar in Ypsilanti. 

“If they have a cap and we reach that cap, then rooftop solar is shut down in Michigan,” he said. “The utilities don’t mind solar as long as they own it, and that’s what it boils down to.”  

The state’s utilities see the situation differently. Spokespeople for DTE and Consumers told the Energy News Network that lifting the cap would shift the cost burden of maintaining their territory-wide infrastructure from all customers to low income customers who can’t afford to install solar panels, often invoking reliability examples such as California's reliance on fossil generation to justify caution.

The bill “doesn’t address the subsidy certain customers are paid at the expense of those who cannot afford to put solar panels on their homes,” said Katie Carey, Consumers Energy’s spokesperson. 

However, clean energy advocates argue that studies have found that to be untrue. And even if it were true, Rabhi said, the utilities told lawmakers in 2016 that a new inflow/outflow tariff that the companies successfully pushed for to replace net metering dramatically reduced compensation for home solar users and would address that inequality. 

“DTE’s and Consumers’ own argument is that by making that change, distributed generation is no longer a ‘burden’ on low income customers, so now we have inflow/outflow and the problem should be solved,” Rabhi said. 

He added that claims that DTE and Consumers are looking out for low-income customers are disingenuous because they have repeatedly fought larger allowances for programs that help those customers, and refuse to “dip into their massive corporate profits and make sure poor people don’t have to pay as much for electricity.”

“I don’t want to hear a sob story from DTE about how putting solar panels on the house is going to hurt poor people,” he said. “That is entirely the definition of hypocrisy — that’s the utilities using poor people as a pawn and that’s why people are sick of these corporations.” 

The companies have already begun their public relations attack designed to help thwart the bill. DTE and Consumers spread money generously among Republicans and Democrats in the Legislature each cycle, and the two companies’ dark money nonprofits launched a round of ads targeting Democratic lawmakers, reflecting the broader solar wars playing out nationally. Several sit on the House Energy Committee, which must approve the bill before it can go in front of the full Legislature. 

The DTE-backed Alliance For Michigan Power and Consumers Energy-funded Citizens Energizing Michigan’s Economy have purchased dozens of Facebook ads alluding to action by the legislators, though there hasn’t been a vote. 

Facebook ads aren’t uncommon as they get “bang for their buck,” said Matt Kasper, research director with utility industry watchdog Energy And Policy Institute. Already hundreds of thousands of people have potentially viewed the ads and the groups have only spent thousands of dollars. The ads are likely designed to get Facebook users to interact with the legislators on the issue, Kasper said, even if there’s little information in the ad, and the info in the ad that does exist is highly misleading.

DTE and Consumers spokespersons declined to comment on the spending and directed questions to the dark money nonprofits. No one there could be reached for comment.

 

Related News

Related News

Asset Management Firm to Finance Clean Coal Technologies Inc.

Clean Coal Technologies Pristine Funding secures investment from a New York asset manager via Black Diamond, advancing commercialization, Tulsa testing, Wyoming relocation, PRB coal enhancement, and cleaner energy innovation to support global coal exports.

 

Key Points

Capital from a New York asset manager backs Pristine commercialization, testing, and Wyoming relocation to boost PRB coal.

✅ Investment via Black Diamond funds Tulsa test operations.

✅ Permanent relocation planned near a Wyoming mine site.

✅ First Pristine M module to enhance PRB coal quality.

 

Clean Coal Technologies, Inc., an emerging cleaner-energy company utilizing patented and proven technology to convert untreated coal into a cleaner burning and more efficient fuel, announced today that the company has secured funding for their Pristine technology through commercialization, a move reminiscent of Bruce C project funding activity, from a major New York-based Asset Management company. This investment will be made through Black Diamond with all funds earmarked for test procedures at the plant near Tulsa, OK, at a time when rare new coal plants are appearing, and the plant's move to a permanent location in Wyoming. The first tranche is being paid immediately.

"Securing this investment will confidently carry us through to the construction of our first commercial module enabling management to focus on the additional tests that have been requested from multiple parties, even as US coal demand faces headwinds across the market," stated CEO of Clean Coal Technologies, Inc., Robin Eves. "At this time we have begun scheduling plant visits with both US government agency and coal industry officials along with key international energy consortiums that are monitoring transitions such as Alberta's coal phaseout policies."

"We're now able to finalize our negotiations in Wyoming where the permitting process has begun and where we will permanently relocate the test facility later this year following completion of the aforementioned tests," added CCTI COO/CFO, Aiden Neary. "This event also paves the way forward to commence the process of constructing the first commercial Pristine M facility. That plant is planned to be in Wyoming near an operating mine where our process can be used to enhance the quality of PRB coal to make it more competitive globally, even as regions like western Europe see coal-to-renewables conversions at legacy plants, and help restore the US coal export market."

 

 

Related News

View more

IEA: Clean energy investment significantly outpaces fossil fuels

Clean Energy Investment is surging as renewables, electric vehicles, grids, storage, and nuclear outpace fossil fuels, driven by energy security, affordability, and policies like the Inflation Reduction Act, the IEA's World Energy Investment report shows.

 

Key Points

Investment in renewables, EVs, grids, and storage now surpasses fossil fuels amid cost and security pressures.

✅ $1.7T to clean tech vs just over $1T to fossil fuels this year.

✅ For every $1 in fossil, about $1.7 goes to clean energy.

✅ Solar investment poised to overtake oil production spending.

 

Investment in clean energy technologies is significantly outpacing spending on fossil fuels as affordability and security concerns, underpinned by analyses showing renewables cheapest new power in many markets, triggered by the global energy crisis strengthen the momentum behind more sustainable options, according to the International Energy Agency's (IEA) latest World Energy Investment report.

About $2.8 trillion (€2.6 trillion) is set to be invested globally in energy this year, of which over $1.7 trillion (€1.59 trillion) is expected to go to clean technologies - including renewables, electric vehicles, nuclear power, grids, storage, low-emissions fuels, efficiency improvements and heat pumps – according to report.

The remainder, slightly more than $1 trillion (€937.7 billion), is going to coal, gas and oil, despite growing calls for a fossil fuel lockdown to meet climate goals.

Annual clean energy investment is expected to rise by 24% between 2021 and 2023, driven by renewables and electric vehicles, with renewables breaking records worldwide over the same period.

But more than 90% of this increase comes from advanced economies and China, which the IEA said presents a serious risk of new dividing lines in global energy if clean energy transitions don’t pick up elsewhere.

“Clean energy is moving fast – faster than many people realise. This is clear in the investment trends, where clean technologies are pulling away from fossil fuels,” said IEA executive director Fatih Birol. “For every dollar invested in fossil fuels, about 1.7 dollars are now going into clean energy. Five years ago, this ratio was one-to-one. One shining example is investment in solar, which is set to overtake the amount of investment going into oil production for the first time.”

Led by solar, low-emissions electricity technologies are expected to account for almost 90% of investment in power generation, reflecting the global renewables share above 30% in electricity markets.

Consumers are also investing in more electrified end-uses. Global heat pump sales have seen double-digit annual growth since 2021. Electric vehicle sales are expected to leap by a third this year after already surging in 2022.

Clean energy investments have been boosted by a variety of factors in recent years, including periods of strong economic growth and volatile fossil fuel prices that raised concerns about energy security, and insights from the IRENA decarbonisation report that underscore broader benefits, especially following Russia’s invasion of Ukraine.

Furthermore, enhanced policy support through major actions like the US Inflation Reduction Act and initiatives in Europe's green surge, Japan, China and elsewhere have played a role.

In Ireland, more than a third of electricity is expected to be green within four years, illustrating national progress.

The biggest shortfalls in clean energy investment are in emerging and developing economies, the IEA added. It pointed to some bright spots, such as dynamic investments in solar in India and in renewables in Brazil and parts of the Middle East. However, investment in many countries is being held back by factors including higher interest rates, unclear policy frameworks and market designs, weak grid infrastructure, financially strained utilities and a high cost of capital.

"Much more needs to be done by the international community, especially to drive investment in lower-income economies, where the private sector has been reluctant to venture," according to the IEA.

 

Related News

View more

There's Room For Canada-U.S. Collaboration As Companies Turn To Electric Cars

Canada EV Supply Chain aligns electric vehicle manufacturing, batteries, and autonomous tech with cross-border trade, leveraging lithium, cobalt, and rare earths as GM, Ford, and Project Arrow scale zero-emissions innovation and domestic sourcing.

 

Key Points

Canada's integrated resources, battery tech, and manufacturing network supporting EV production and cross-border trade.

✅ Leverages lithium, cobalt, and rare earths for battery supply

✅ Integrates GM, Ford, and Project Arrow manufacturing hubs

✅ Aligns with autonomous tech, hydrogen, and zero-emissions goals

 

The storied North American automotive industry, the ultimate showcase of Canada’s high-tensile trade ties with the United States, is about to navigate a dramatic hairpin turn.

But as the Big Three veer into the all-electric, autonomous era, some Canadians want to seize the moment to capitalize on the U.S. pivot and take the wheel.

“There’s a long shadow between the promise and the execution, but all the pieces are there,” says Flavio Volpe, president of the Automotive Parts Manufacturers’ Association.

“We went from a marriage on the rocks to one that both partners are committed to. It could be the best second chapter ever.”

Volpe is referring specifically to GM, which announced late last month an ambitious plan to convert its entire portfolio of vehicles to an all-electric platform by 2035, even as a 2035 EV mandate debate unfolds.

But that decision is just part of a market inflection point across the industry, with existential ramifications for one of the most tightly integrated cross-border manufacturing and supply-chain relationships in the world.

China is already working hard to become the “source of a new way” to power vehicles, President Joe Biden warned last week.

“We just have to step up.”

Canada has both the resources and expertise to do the same, says Volpe, whose ambitious Project Arrow concept — a homegrown zero-emissions vehicle named for the 1950s-era Avro interceptor jet — is designed to showcase exactly that.

“We’re going to prove to the market, we’re going to prove to the (manufacturers) around the planet, that everything that goes into your zero-emission vehicle can be made or sourced here in Canada,” he says.

“If somebody wants to bring what we did over the line and make 100,000 of them a year, I’ll hand it to them.”

GM earned the ire of Canadian auto workers in 2018 by announcing the closure of its assembly plant in Oshawa, Ont. It later resurrected the facility with a $170-million investment to retool it for autonomous vehicles.

“It was, ‘You closed Oshawa, how dare you?’ And I was one of the ‘How dare you’ people,” Volpe says.

“Well, now that they’ve reopened Oshawa, you sit there and you open your eyes to the commitment that General Motors made.”

Ford, too, has entered the fray, promising $1.8 billion to retool its sprawling landmark facility in Oakville, Ont., to build EVs, as EV assembly deals help put Canada in the race.

‘Range anxiety’
It’s a leap of faith of sorts, considering what market experts say is ongoing consumer doubt about EVs, including shortages and wait times that persist.

“Range anxiety” — the persistent fear of a depleted battery at the side of the road — remains a major concern, even though it’s less of a problem than most people think.

Consulting firm Deloitte Canada, which has been tracking automotive consumer trends for more than a decade, found three-quarters of future EV buyers it surveyed planned to charge their vehicles at home overnight.

“The difference between what is a perceived issue in a consumer’s mind and what is an actual issue is actually quite negligible,” Ryan Robinson, Deloitte’s automotive research leader, says in an interview.

“It’s still an issue, full stop, and that’s something that the industry is going to have to contend with.”

So, too, is price, especially with the end of the COVID-19 pandemic still a long way off. Deloitte’s latest survey, released last month, found 45 per cent of future buyers in Canada hope to spend less than $35,000 — a tall order when most base electric-vehicle models hover between $40,000 and $45,000.

“You put all of that together and there’s still some major challenges that a lot of stakeholders that touch the automotive industry face,” Robinson says.

“It’s not just government, it’s not just automakers, but there are a variety of stakeholders that have a role to play in making sure that Canadians are ready to make the transition over to electric mobility.”

With protectionism no longer a dirty word in the United States and Biden promising to prioritize American workers and suppliers, the Canadian government’s job remains the same as it ever was: making sure the U.S. understands Canada’s mission-critical role in its own economic priorities.

“We’re both going to be better off on both sides of the border, as we have been in the past, if we orient ourselves toward this global competition as one force,” says Gerald Butts, vice-chairman of the political-risk consultancy Eurasia Group and a former principal secretary to Prime Minister Justin Trudeau.

“It served us extraordinarily well in the past ... and I have no reason to believe it won’t serve us well in the future.”

EV battery industry
Last month, GM announced a billion-dollar plan to build its new all-electric BrightDrop EV600 van in Ingersoll, Ont., at Canada’s first large-scale EV manufacturing plant for delivery vehicles.

That investment, Volpe says, assumes Canada will take the steps necessary to help build a homegrown battery industry out of the country’s rare-earth resources like lithium and cobalt that are waiting to be extracted in northern Ontario, Quebec and elsewhere, including projects such as a $1.6B battery plant in Niagara that signal momentum.

Given that the EV industry is still in his infancy, the free market alone won’t be enough to ensure those resources can be extracted and developed, he says.

“General Motors made a billion-dollar bet on Canada because it’s going to assume that the Canadian government — this one or the next one — is going to commit” to building that business.

Such an investment would pay dividends well beyond the auto sector, considering the federal Liberal government’s commitment to lowering greenhouse gas-emissions and meeting targets set out in the Paris climate accord.

“If you make investments in renewable energy and energy storage in Ontario using battery technology, you can build an industry at scale that the auto industry can borrow,” Volpe says.

Major manufacturing, retail and office facilities would be able to use that technology to help “shave the peak” off Canada’s GHG emissions and achieve those targets, all the while paving the way for a self-sufficient electric-vehicle industry.

“You’d be investing in the exact same technology you’d use in a car.”

There’s one problem, says Robinson: the lithium-ion batteries on roads right now might not be where the industry ultimately lands.

“We’re not done with with battery technology,” Robinson says. “What you don’t want to do is invest in a technology that is that is rapidly evolving, and could potentially become obsolete going forward.”

Fuel cells — energy-efficient, hydrogen-powered units that work like batteries, but without the need for constant recharging — continue to be part of the conversation, he adds.

“The amount of investment is huge, and you want to be sure that you’re making the right decision, so you don’t find yourself behind the curve just as all that capacity is coming online.”

 

Related News

View more

Wind Turbine Operations and Maintenance Industry Detailed Analysis and Forecast by 2025

Wind Turbine Operations and Maintenance Market is expanding as offshore and onshore renewables scale, driven by aging turbines, investment, UAV inspections, and predictive O&M services, despite skills shortages and rising logistics costs.

 

Key Points

Sector delivering inspection, repair, and predictive services to keep wind assets reliable onshore and offshore.

✅ Aging turbines and investor funding drive service demand

✅ UAV inspections and predictive analytics cut downtime

✅ Offshore growth offsets skills and logistics constraints

 

Wind turbines are capable of producing vast amounts of electricity at competitive prices, provided they are efficiently maintained and operated. Being a cleaner, greener source of energy, wind energy is also more reliable than other sources of power generation, with growth despite COVID-19 recorded across markets. Therefore, the demand for wind energy is slated to soar over the next few years, fuelling the growth of the global market for wind turbine operations and maintenance. By application, offshore and onshore wind turbine operations and maintenance are the two major segments of the market.

 

Global Wind Turbine Operations and Maintenance Market: Key Trends

The rising number of aging wind turbines emerges as a considerable potential for the growth of the market. The increasing downpour of funds from financial institutions and public and private investors has also been playing a significant role in the expansion of the market, with interest also flowing toward wave and tidal energy technologies that inform O&M practices. On the other hand, insufficient number of skilled personnel, coupled with increasing costs of logistics, remains a key concern restricting the growth of the market. However, the growing demand for offshore wind turbines across the globe is likely to materialize into fresh opportunities.

 

Global Wind Turbine Operations and Maintenance Market: Market Potential

A number of market players have been offering diverse services with a view to make a mark in the global market for wind turbine operations and maintenance. For instance, Scotland-based SgurrEnergy announced the provision of unmanned aerial vehicles (UAVs), commonly known as drones, as a part of its inspection services. Detailed and accurate assessments of wind turbines can be obtained through these drones, which are fitted with cameras, with four times quicker inspections than traditional methods, claims the company. This new approach has not only reduced downtime, but also has prevented the risks faced by inspection personnel.

The increasing number of approvals and new projects is preparing the ground for a rising demand for wind turbine operations and maintenance. In March 2017, for example, the Scottish government approved the installation of eight 6-megawatt wind turbines off the coast of Aberdeen, towards the northeast. The state of Maryland in the U.S. will witness the installation of a new offshore wind plant, encouraging greater adoption of wind energy in the country. The U.K., a leader in UK offshore wind deployment, has also been keeping pace with the developments, with the installation of a 400-MW offshore wind farm, off the Sussex coast throughout 2017. The Rampion project will be developed by E.on, who has partnered with Canada-based Enbridge Inc. and the UK Green Investment Bank plc.

 

Global Wind Turbine Operations and Maintenance Market: Regional Outlook

Based on geography, the global market for wind turbine operations and maintenance has been segmented into Asia Pacific, Europe, North America, and Rest of the World (RoW). Countries such as India, China, Spain, France, Germany, Scotland, and Brazil are some of the prominent users of wind energy and are therefore likely to account for a considerable share in the market. In the U.S., favorable government policies are backing the growth of the market, though analyses note that a prolonged solar ITC extension could pressure wind competitiveness. For instance, in 2013, a legislation that permits energy companies to transfer the costs of offshore wind credits to ratepayers was approved. Asia Pacific is a market with vast potential, with India and China being major contributors aiding the expansion of the market.

 

Global Wind Turbine Operations and Maintenance Market: Competitive Analysis

Some of the major companies operating in the global market for wind turbine operations and maintenance are Gamesa Corporacion Tecnologica, Xinjiang Goldwind Science & Technologies, Vestas Wind Systems A/S, Upwind Solutions, Inc, GE Wind Turbine, Guodian United Power Technology Company Ltd., Nordex SE, Enercon GmbH, Siemens Wind Power GmbH, and Suzlon Group. A number of firms have been focusing on mergers and acquisitions to extend their presence across new regions.

 

Related News

View more

BC's Kootenay Region makes electric cars a priority

Accelerate Kootenays EV charging stations expand along Highway 3, adding DC fast charging and Level 2 plugs to cut range anxiety for electric vehicles in B.C., linking communities like Castlegar, Greenwood, and the Alberta border.

 

Key Points

A regional network of DC fast and Level 2 chargers along B.C.'s Highway 3 to reduce range anxiety and boost EV adoption.

✅ 13 DC fast chargers plus 40 Level 2 stations across key hubs

✅ 20-minute charging stops reduce range anxiety on Highway 3

✅ Backed by BC Hydro, FortisBC, and regional districts

 

The Kootenays are B.C.'s electric powerhouse, and as part of B.C.'s EV push the region is making significant advances to put electric cars on the road.

The region's dams generate more than half of the province's electricity needs, but some say residents in the region have not taken to electric cars, for instance.

Trish Dehnel is a spokesperson for Accelerate Kootenays, a multi-million dollar coalition involving the regional districts of East Kootenay, Central Kootenay and Kootenay Boundary, along with a number of corporate partners including Fortis B.C. and BC Hydro.

She says one of the major problems in the region — in addition to the mountainous terrain and winter driving conditions — is "range anxiety."

That's when you're not sure your electric vehicle will be able to make it to your destination without running out of power, she explained.

Now, Accelerate Kootenays is hoping a set of new electric charging stations, part of the B.C. Electric Highway project expanding along Highway 3, will make a difference.

 

No more 'range anxiety'

The expansion includes 40 Level 2 stations and 13 DC Quick Charging stations, mirroring BC Hydro's expansion across southern B.C. strategically located within the region to give people more opportunities to charge up along their travel routes, Dehnel said.

"We will have DC fast-charging stations in all of the major communities along Highway 3 from Greenwood to the Alberta border. You will be able to stop at a fast-charging station and, thanks to faster EV charging technology, charge your vehicle within 20 minutes," she said.

Castlegar car salesman Terry Klapper — who sells the 2017 Chevy Bolt electric vehicle — says it's a great step for the region as sites like Nelson's new fast-charging station come online.

"I guarantee that you'll be seeing electric cars around the Kootenays," he said.

"The interest the public has shown … [I mean] as soon as people found out we had these Bolts on the lot, we've had people coming in every single day to take a look at them and say when can I finally purchase it."

The charging stations are set to open by the end of next year.

 

Related News

View more

Volvo Trucks to launch complete range of electric trucks in Europe in 2021

Volvo Electric Heavy-Duty Trucks lead Europe’s e-mobility shift, meeting strict emissions rules with battery-electric drivelines, hydrogen fuel cell roadmaps, fast charging infrastructure, and autonomous freight solutions for regional haulage and urban construction.

 

Key Points

A battery-electric heavy truck range for haulage and urban construction, targeting zero emissions and compliance.

✅ Up to 44t GCW, ranges up to 300 km per charge

✅ Battery-electric now; hydrogen fuel cells targeted next

✅ Production from 2022; suited to haulage and construction

 

According to the report published by Allied Market Research, the global electric truck market generated $422.5M (approx €355.1M) in 2019 and is estimated to reach $1.89B (approx €1.58B) by 2027, registering a CAGR of 25.8% from 2020 to 2027, reflecting broader expectations that EV adoption within a decade will accelerate worldwide. 

The surge in government initiatives to promote e-mobility and stringent emission norms on vehicles using fossil fuels (petrol and diesel) is driving the growth of the global electric truck market, while shifts in the EV aftermarket are expected to reinforce this trend. 


Launching a range of electric trucks in 2021
Volvo is among the several companies, including early moves like Tesla's truck reveal efforts, trying to cash in on this popular and lucrative market. Recently, the company announced that it’s going to launch a complete heavy-duty range of trucks with electric drivelines starting in Europe in 2021. Next year, hauliers in Europe will be able to order all-electric versions of Volvo’s heavy-duty trucks. The sales will begin next year and volume production will start in 2022. 

“To reduce the impact of transport on the climate, we need to make a swift transition from fossil fuels to alternatives such as electricity. But the conditions for making this shift, and consequently the pace of the transition, vary dramatically across different hauliers and markets, depending on many variables such as financial incentives, access to charging infrastructure and type of transport operations,” explains Roger Alm, President Volvo Trucks.


Used for regional transport and urban construction operations
According to the company, it is now testing electric heavy-duty models – Volvo FH, FM, and FMX trucks, which will be used for regional transport and urban construction operations in Europe, and in the U.S., 70 Volvo VNR Electric trucks are being deployed in California initiatives as well. These Volvo trucks will offer a complete heavy-duty range with electric drivelines. These trucks will have a gross combination weight of up to 44 tonnes.

“Our chassis is designed to be independent of the driveline used. Our customers can choose to buy several Volvo trucks of the same model, with the only difference being that some are electric and others are powered by gas or diesel. As regards product characteristics, such as the driver’s environment, reliability, and safety, all our vehicles meet the same high standards. Drivers should feel familiar with their vehicles and be able to operate them safely and efficiently regardless of the fuel used,” says Alm.


Fossil free by 2040
Depending on the battery configuration the range could be up to 300 km, claims the company. Back in 2019, Volvo started manufacturing the Volvo FL Electric and FE Electric for city distribution and refuse operations, primarily in Europe, while in the van segment, Ford's all-electric Transit targets similar urban use cases. Volvo Trucks aims to start selling electric trucks powered by hydrogen fuel cells in the second half of this decade. Volvo Trucks’ objective is for its entire product range to be fossil-free by 2040.

Back in 2019, Swedish autonomous and electric freight mobility leader provider Einride’s Pod became the world’s first autonomous, all-electric truck to operate a commercial flow for DB Schenker with a permit on the public road. Last month, the company launched its next-generation Pod in the hopes to have it on the road starting from 2021, while major fleet commitments such as UPS's Tesla Semi pre-orders signal broader demand.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.