Spain Breaks Gas Link with Wind and Solar


Spain Breaks Gas Link with Wind and Solar Energy Growth

CSA Z463 Electrical Maintenance

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 6 hours Instructor-led
  • Group Training Available
Regular Price:
$249
Coupon Price:
$199
Reserve Your Seat Today

Spain has broken its reliance on fossil gas as soaring wind and solar energy drive Europe’s lowest wholesale electricity prices, reducing emissions, stabilizing the grid, and advancing renewable power, energy independence, and clean transition goals across the EU.

 

How Has Spain Broken the Gas Link with Wind and Solar??

Spain has broken the link between gas and power prices by rapidly expanding wind and solar generation, which now supplies nearly half its electricity, cutting fossil fuel influence by 75% since 2019 and reducing power costs 32% below the EU average.

✅ Wind and solar cut fossil influence by 75% since 2019

✅ Power prices 32% below EU average in 2025

✅ Renewables meet nearly half of national electricity demand

 

Spain has emerged as one of Europe’s most affordable electricity markets, largely due to its rapid expansion of wind and solar power. By decoupling its wholesale electricity prices from volatile fossil gas and coal, Spain has achieved a 32 percent lower average wholesale price than the EU average in the first half of 2025. This remarkable shift marks a dramatic turnaround from 2019, when Spain had some of the highest power prices in Europe.

According to new data, the influence of fossil fuels on Spain’s electricity prices has fallen by 75 percent since 2019, mirroring how renewables have surpassed fossil fuels in Europe over the same period, dropping from 75 percent of hours tied to gas costs to just 19 percent in early 2025. “Spain has broken the ruinous link between power prices and volatile fossil fuels, something its European neighbours are desperate to do,” said Dr. Chris Rosslowe, Senior Energy Analyst at Ember.

The change is driven by a surge in renewable generation. Between 2019 and mid-2025, Spain added more than 40 gigawatts of new solar and wind capacity—second only to Germany, whose power market is twice the size. Wind and solar now meet nearly half (46 percent) of Spain’s electricity demand, compared with 27 percent six years ago. As a result, fossil generation has fallen to 20 percent of total demand, well below the levels seen in other major economies such as Germany (41 percent) and Italy (43 percent).

This renewable growth has also cut Spain’s dependence on imported fuels. In the past five years, new solar and wind plants have avoided 26 billion cubic metres of gas imports, saving €13.5 billion—five times the amount the country invested in transmission infrastructure over the same period. The Central Bank of Spain estimated that wholesale electricity prices would have been 40 percent higher in 2024 if renewables had not displaced fossil generation, and neighboring France has seen negative prices during periods of renewable surplus.

August 2025 marked a historic milestone: Spain recorded a full month without coal-fired generation for the first time. A decade earlier, coal accounted for a quarter of the nation’s electricity supply. Gas use has also declined steadily, from 26% of demand in 2019 to 19% this year.

However, the system still faces challenges. Following the April 28th Iberian blackout, Spain has relied more heavily on gas-fired plants to stabilize the grid. These services—such as voltage control and balancing—have proven to be expensive, with costs doubling since the blackout and accounting for 57 percent of the average electricity price in May 2025, up from 14 percent the previous year. Curtailment of renewables has also tripled, reaching 7.2 percent of generation between May and July.

Despite being Europe’s fourth-largest electricity market, Spain ranks only 13th in battery storage capacity, underscoring the need for further investment in clean flexibility solutions, such as grid-scale batteries to provide flexibility and stronger interconnections. Post-blackout reforms aim to address this weakness and ensure the gains from renewable integration are not lost.

“Spain risks sliding back into costly gas reliance amid post-blackout fears,” warned Rosslowe. “Boosting grids and batteries will help Spain break free from fossil dependency for good.”

With record-low electricity prices and one of the fastest decoupling rates in Europe, Spain’s experience demonstrates how large-scale wind and solar adoption can reshape energy economics—and offers a roadmap for other nations seeking to escape the volatility of fossil fuels.

Related News

Texas battery rush: Oil state's power woes fuel energy storage boom

Texas Battery Storage Investment Boom draws BlackRock, SK, and UBS, leveraging ERCOT price volatility, renewable energy growth, and utility-scale energy storage arbitrage to enhance grid reliability, resilience, and double-digit returns across high-demand nodes.

 

Key Points

Texas sees a rush into battery storage, using ERCOT price spreads to bolster grid reliability and earn about 20% returns.

✅ Investors exploit price volatility, peak-demand spreads.

✅ Utility-scale storage enhances ERCOT reliability.

✅ Top players: BlackRock, SK E&S, UBS; 700 MW deals.

 

BlackRock, Korea's SK, Switzerland's UBS and other companies are chasing an investment boom in battery storage plants in Texas, lured by the prospect of earning double-digit returns from the power grid problems plaguing the state, according to project owners, developers and suppliers.

Projects coming online are generating returns of around 20%, compared with single digit returns for solar and wind projects, according to Rhett Bennett, CEO of Black Mountain Energy Storage, one of the top developers in the state.

"Resolving grid issues with utility-scale energy storage is probably the hottest thing out there,” he said.

The rapid expansion of battery storage could help, through efforts like a virtual power plant initiative in Texas, prevent a repeat of the February 2021 ice storm and grid collapse which killed 246 people and left millions of Texans without power for days.

The battery rush also puts the Republican-controlled state at the forefront of President Joe Biden's push to expand renewable energy use.

Power prices in Texas can swing from highs of about $90 per megawatt hour (MWh) on a normal summer day to nearly $3,000 per MWh when demand surges on a day with less wind power, a dynamic tied to wind curtailment on the Texas grid according to a simulation by the federal government's U.S. Energy Information Administration.

That volatility, a product of demand and higher reliance on intermittent wind and solar energy, has fueled a rush to install battery plants, aided by falling battery costs, that store electricity when it is cheap and abundant and sell when supplies tighten and prices soar.

Texas last year accounted for 31% of new U.S. grid-scale energy storage, with much of it pairing storage with solar, according to energy research firm Wood Mackenzie, second only to California which has had a state mandate for battery development for a decade.

And Texas is expected to account for nearly a quarter of the U.S. grid-scale storage market over the next five years, a trajectory consistent with record U.S. solar-plus-storage growth noted by analysts, according to Wood Mackenzie projections shared with Reuters.

Developers and energy traders said locations offering the highest returns -- in strapped areas of the grid -- will become increasingly scarce as more storage comes online and, as diversifying resources for better projects suggests, electricity prices stabilize.

Texas lawmakers this week voted to provide new subsidies for natural gas power plants in a bid to shore up reliability. But the legislation also contains provisions that industry groups said could encourage investment in battery storage by supporting 'unlayering' peak demand approaches.

Amid the battery rush, BlackRock acquired developer Jupiter Power from private equity firm EnCap Investments late last year. Korea's SK E&S acquired Key Capture Energy from Vision Ridge Partners in 2021 and UBS bought five Texas projects from Black Mountain last year for a combined 700 megawatts (MW) of energy storage. None of the sales' prices were disclosed.

SK E&S said its acquisition of Key Capture was part of a strategy to invest in U.S. grid resiliency.

"SK E&S views energy storage solutions in Texas and across the U.S. as a core technology that supports a new energy infrastructure system to ensure American homes and businesses have affordable power," the company said in a statement.

 

Related News

View more

Tesla's lead in China's red-hot electric vehicle market is shrinking, says rival XPeng

China EV Market sees surging deliveries as Tesla, XPeng, Nio, and Li Auto race for market share, driven by tech-forward infotainment, autonomous features, and strong P7 and G3 demand, signaling intensifying competition and rapid growth.

 

Key Points

China EV Market features rapid EV sales growth led by Tesla, XPeng, Nio, and Li Auto amid tech-driven competition.

✅ XPeng deliveries up 617% YoY in June; 459% YTD growth

✅ Nio and Li Auto post triple-digit quarterly gains

✅ Tech focus: infotainment, ADAS; models P7, G3, G3i

 

XPeng President and Vice Chairman Brian Gu is quick to praise the Tesla brand and acknowledge the EV maker's "commanding" market share in China, and in key markets like the California EV market as well. 

But in the same breath, the executive at the upstart China-based EV rival said his company and peers are fast closing the competitive gap with Tesla.

"I think the Chinese players are catching up very quickly," Gu said on Yahoo Finance Live. "Our product as well as some of the other products that are being introduced by the leading players are very good, and have comparable specs — as well as better features I think compared to Tesla."

That point is not lost in the sales data from the main China EV players, and mirrors the global EV surge seen in recent years.

XPeng said this week deliveries in June surged 617% year-over-year to 6,565. So far this year, deliveries have skyrocketed 459% to 30,738 fueled by demand for XPeng's P7 sedan and G3 SUV, despite concerns about the biggest threats to the EV boom among investors. 

June deliveries at Nio rose 116% from a year ago to 8,083, even as mainstream adoption hurdles remain industry-wide. For the quarter ending June 30, Nio delivered 21,896 vehicles marking a growth rate from a year ago of 112%. 

As for Li Auto, its June deliveries rose 321% from a year earlier to 7,713. Second quarter deliveries improved 166% year-over-year to 17,575.

Tesla reportedly sold 33,155 cars in China in June, up 122% year-over-year, even as its energy business outlook remains a focus for investors. 

"In the last few months, our growth has outpaced the industry as well as Tesla in China. But I think it's a long race because ultimately this market will not be dominated by one or two companies. It will probably be a number of players occupying probably large market share positions of 10% and above. That will likely be the trend, and we hope to be one of those top players," Gu explained. 

XPeng — which JPMorgan analysts estimate could grab 8% of China's electric car market by 2025 —currently has two models in the Chinese electric car market, as China's carmakers push into Europe too. They have gained notoriety in an increasingly crowded market for their tech-forward infotainment systems and autonomous technology.

The company's third model dubbed the G3i is expected to see deliveries begin in September, taking aim at smaller sedans such as the Toyota Camry. 

Shares of China's EV makers have cooled off this year despite their strong sales, and the U.S. EV market share dipped in early 2024 as well. XPeng shares are down 7% year-to-date, while Nio has shed 5%. Li Auto's stock is down 11% on the year. 

 

Related News

View more

Factory Set to Elevate the United States in the Clean Energy Race

Maxeon IBC Solar Factory USA will scale clean energy with high-efficiency interdigitated back contact panels, DOE-backed manufacturing in Albuquerque, utility-scale supply, domestic production, 3 GW capacity, reduced imports, carbon-free electricity leadership.

 

Key Points

DOE-backed Albuquerque plant making high-efficiency IBC panels, 3 GW yearly, for utility-scale, domestic solar supply.

✅ 3 GW annual capacity; up to 8 million panels produced

✅ IBC cell efficiency up to 24.7% for utility-scale projects

✅ Reduces U.S. reliance on imported panels via domestic manufacturing

 

Solar energy stands as a formidable source of carbon-free electricity, with the No. 3 renewable source in the U.S. offering a clean alternative to traditional power generation methods reliant on polluting fuels. Advancements in solar technology continue to emerge, with a U.S.-based company poised to spearhead progress from a cutting-edge factory in New Mexico.

Maxeon, initially hailing from Silicon Valley in the 1980s, recently ventured into independence after separating from its parent company, SunPower, in 2020. Over the past few years, Maxeon has been manufacturing solar panels in Mexico, Malaysia, and the Philippines, as record U.S. panel shipments underscored rising demand.

Now, with backing from the U.S. Department of Energy's Loans Programs Office, Maxeon is preparing to commence construction on a new facility in Albuquerque in 2024, amid unprecedented growth in solar and storage nationwide. This state-of-the-art factory aims to produce up to 8 million panels annually, featuring the company's interdigitated back contact (IBC) technology, which has the capacity to generate three gigawatts of power each year. Notably, the entire U.S. solar industry completed five gigawatts of panels in 2022, making Maxeon's endeavor particularly ambitious and aligned with Biden's proposed tenfold increase in solar power goals.

Maxeon's presence in the United States holds the potential to reduce the country's reliance on imported panels, particularly from China. The primary focus will be on providing this advanced technology for utility departments, where pairing with increasingly affordable batteries can enhance grid reliability while shifting away from residential and commercial rooftops.

Maxeon has achieved a remarkable milestone in solar efficiency, with its latest IBC technology boasting an efficiency rating of 24.7%, as reported by PV Magazine.

This strategic move to the United States could be a game-changer, not only for Maxeon's success but also for clean power generation in a nation that has traditionally depended on external sources for its supply of solar panels, as energy-hungry Europe turns to U.S. solar equipment makers for solutions. Matt Dawson, Maxeon's Chief Technology Officer, emphasized the importance of achieving the lowest levelized cost of electricity with the lowest overall capital, a feat that China has accomplished in recent years due to the strength of its supply chain. As energy independence becomes a global concern, solar manufacturing is poised to expand beyond China, with Southeast Asia already showing signs of growth, and now the United States and possibly Europe, including Germany's solar boost during the energy crisis, following suit.

 

Related News

View more

Electric vehicle charging network will be only two thirds complete by Friday deadline, Ontario says

Ontario EV Charging Network Delay highlights permitting hurdles, grid limitations, and public-private rollout challenges across 250 sites, as two-thirds of 475 chargers go live while full provincewide infrastructure deployment slips to fall.

 

Key Points

A provincial rollout setback where permitting and grid issues delay full activation of Ontario's 475 public EV chargers.

✅ Two-thirds of 475 chargers live by the initial deadline

✅ Remaining stations expected online by fall

✅ Delays tied to permits, site conditions, and grid capacity

 

The Ontario government admitted Wednesday that it will fall short of meeting its deadline this Friday of creating a network of 475 electric vehicle charging stations in 250 locations across the province, and it's blaming unforeseen problems for the delay.

"We know some of our partners have encountered difficulties around permitting and some of the technical aspects of having some of the chargers up and running, even as we work to make it easier to build EV charging stations across Ontario," said Transportation Minister Steven Del Duca.

Two-thirds of the network will be live on Friday with the rest of the stations expected to be up and running by fall, according to the Ministry of Transportation. 

"Each of our partners' individual charging stations are subject to different site conditions, land ownership, municipal permitting, electrical grid limitations, as seen in regions where EV infrastructure lags, and other factors which have influenced timelines," said Bob Nichols, senior media liaison officer for the Transportation Ministry, in a statement. 

Because the stations are located in various community centres, retail outlets and other public spaces, Del Duca said the government's public and private sector partners are facing challenges in obtaining permits but are "motivated to get it right."

Cara Clairman, president and CEO of Plug'n Drive, an organization dedicated to accelerating the rollout of electric vehicles, says she isn't concerned about the delay.

"It was a pretty aggressive timeline. The EV community is pretty happy with the fact that it is going to happen. It might be slightly delayed but I think overall the mood is positive," she said.

Clairman said there are now more than 10,000 electric vehicles in the province and that more growth is expected as Ontario's next EV wave emerges in the market. She doesn't believe the delay in the rollout of charging stations will deter anyone from purchasing electric vehicles, even amid EV shortages and wait times in some segments.

"It certainly does help to persuade new folks to get on board but I think since they know it is coming, I don't see it having a big impact." 

Horwath not surprised

NDP Leader Andrea Horwath said she's not surprised the government didn't meet its target.

"You shouldn't be making these promises if you can't fulfil them, that's the bottom line," she said. "Let's be realistic with
what you're able to achieve."

Progressive Conservative transportation critic Michael Harris suggested the Liberals don't have their priorities straight when it comes to electric vehicles.

"I think the focus for Kathleen Wynne was handing out $14,000 rebates to owners of Teslas, while they really should have been focusing their time and energy on ensuring that the infrastructure for electric vehicles has actually been rolled out," Harris said.

Covering every corner

Del Duca said the ministry has seen "some fairly tremendous success" despite the delays but that there have been a few challenges in building a network that ranges across the province, even as N.L.'s first fast-charging network is touted as just the beginning elsewhere. 

"We definitely want to make sure we're building a network that covers every corner of Ontario. Yes, we have some challenges and we are slightly delayed," the minister said.

"We anticipate being able to provide more resources in the coming months to continue to deploy an even broader network of charging infrastructure, including in northern Ontario."

Del Duca said a map on the ministry's website showing where the charging stations are installed should be updated in the next few days.

Premier Wynne committed to building a charging network for electric vehicles across Ontario at the 2015 climate change talks in Paris.

The $20 million in funding for the charging stations comes from Ontario's $325 million Green Investment Fund, which supports projects that fight climate change.

 

Related News

View more

These companies are using oceans and rivers to generate electricity

Tidal Energy harnesses ocean currents with tidal turbines to deliver predictable, renewable power. From Scotland's Orkney to New York's East River, clean baseload electricity complements wind and solar in decarbonizing grids.

 

Key Points

Tidal energy uses underwater turbines to capture predictable ocean currents, delivering reliable, low-carbon power.

✅ Predictable 2-way flows enable forecastable baseload

✅ Higher energy density than wind, slower flow speeds

✅ Costs remain high; scaling and deployment are challenging

 

As the world looks to curb climate change and reduce fossil fuel emissions, some companies are focusing on a relatively untapped but vast and abundant source of energy — tidal waves.

On opposite sides of the Atlantic, two firms are working to harness ocean currents in different ways to try to generate reliable clean energy.

Off the coast of Scotland, Orbital Marine Power operates what it says is the "most powerful tidal turbine in the world." The turbine is approximately the size of a passenger airplane and even looks similar, with its central platform floating on the water and two wings extending downwards on either side. At the ends of each wing, about 60 feet below the surface, are large rotors whose movement is dictated by the waves.

"The energy itself of tidal streams is familiar to people, it's kinetic energy, so it's not too dissimilar to something like wind," Andrew Scott, Orbital's CEO, told CNN Business. "The bits of technology that generate power look not too different to a wind turbine."

But there are some key differences to wind energy, primarily that waves are far more predictable than winds. The ebb and flow of tides rarely differs significantly and can be timed far more precisely.

Orbital Marine Power's floating turbines off the Scottish coast produce enough energy to power 2,000 homes a year, while another Scottish tidal project recently produced enough for nearly 4,000 homes.

Orbital Marine Power's floating turbines off the Scottish coast produce enough energy to power 2,000 homes a year.

"You can predict those motions years and decades [in] advance," Scott said. "But also from a direction perspective, they only really come from two directions and they're almost 180 degrees," he added, unlike wind turbines that must account for wind from several different directions at once.

Tidal waves are also capable of generating more energy than wind, Scott says.

"Seawater is 800 times the density of wind," he said. "So the flow speeds are far slower, but they generate far more energy."

The Orbital turbine, which is connected to the electricity grid in Scotland's Orkney, can produce up to two megawatts — enough to power 2,000 homes a year — according to the company.

Scott acknowledges that the technology isn't fully mainstream yet and some challenges remain including the high cost of the technology, but the reliability and potential of tidal energy could make it a useful tool in the fight against climate change, as projects like Sustainable Marine in Nova Scotia begin delivering power to the grid.

"It is becoming increasingly apparent that ... climate change is not going to be solved with one silver bullet," he said.


'Could be 24/7 power'
Around 3,000 miles away from Orbital's turbines, Verdant Power is using similar technology to generate power near Roosevelt Island in New York City's East River. Although not on the market yet, Verdant's turbines set up as part of a pilot project help supply electricity to New York's grid. But rather than float near the surface, they're mounted on a frame that's lowered to the bottom of the river.

"The best way to envision what Verdant Power's technology is, is to think of wind turbines underwater," the company's founder, Trey Taylor, told CNN Business. And river currents tend to provide the same advantages for energy generation as ocean currents, he explained (though the East River is also connected to the Atlantic).

"What's nice about our rivers and systems is that could be 24/7 power," he said, even as U.S. offshore wind aims to compete with gas. "Not to ding wind or solar, but the wind doesn't always blow and the sun doesn't always shine. But river currents, depending on the river, could be 24/7."

Verdant Power helps supply electricity to New York City
Over the course of eight months, Verdant has generated enough electricity to power roughly 60 homes — though Taylor says a full-fledged power plant built on its technology could generate enough for 6,000 homes. And by his estimate, the global capacity for tidal energy is enormous, with regions like the Bay of Fundy pursuing new attempts around Nova Scotia.


A costly technology
The biggest obstacle to reaching that goal at the moment is how expensive it is to set up and scale up tidal power systems.

"Generating electricity from ocean waves is not the challenge, the challenge is doing it in a cost-effective way that people are willing to pay for that competes with ... other sources of energy," said Jesse Roberts, Environmental Analysis Lead at the US government-affiliated Sandia National Laboratories. "The added cost of going out into the ocean and deploying in the ocean... that's very expensive to do," he added. According to 2019 figures from the US Department of Energy, the average commercial tidal energy project costs as much as $280 per megawatt hour. Wind energy, by comparison, currently costs roughly $20 per megawatt hour and is "one of the lowest-priced energy sources available today," with major additions like the UK's biggest offshore wind farm starting to supply the grid, according to the agency.

When operational, the Orbital turbine's wing blades drop below the surface of the water and generate power from ocean currents.

When operational, the Orbital turbine's wing blades drop below the surface of the water and generate power from ocean currents.

Roberts estimates that tidal energy is two or three decades behind wind energy in terms of adoption and scale.

The costs and challenges of operating underwater are something both Scott and Taylor acknowledge.
"Solar and wind are above ground. It's easy to work with stuff that you can see," Taylor said. "We're underwater, and it's probably easier to get a rocket to the moon than to get these to work underwater."
But the goal of tidal power is not so much to compete with those two energy sources as it is to grow the overall pie, alongside innovations such as gravity power that can help decarbonize grids.

"The low hanging fruit of solar and wind were quite obvious," Scott said. "But do they have to be the only solution? Is there room for other solutions? I think when the energy source is there, and you can develop technologies that can harness it, then absolutely."
 

 

Related News

View more

Electric vehicle owners can get paid to sell electricity back to the grid

Ontario EV V2G Pilots enable bi-directional charging, backup power, and grid services with IESO, Toronto Hydro, and Hydro One, linking energy storage, solar, blockchain apps, and demand response incentives for smarter electrification.

 

Key Points

Ontario EV V2G pilots test bidirectional charging and backup power to support grid services with apps and incentives.

✅ Tests Nissan Leaf V2H backup with Hydro One and Peak Power.

✅ Integrates solar, storage, blockchain apps via Sky Energy and partners.

✅ Pilots demand response apps in Toronto and Waterloo utilities.

 

Electric vehicle owners in Ontario may one day be able to use the electricity in their EVs instead of loud diesel or gas generators to provide emergency power during blackouts. They could potentially also sell back energy to the grid when needed. Both are key areas of focus for new pilot projects announced this week by Ontario’s electricity grid operator and partners that include Toronto Hydro and Ontario Hydro.

Three projects announced this week will test the bi-directional power capabilities of current EVs and the grid, all partially funded by the Independent Electricity System Operator (IESO) of Ontario, with their announcement in Toronto also attended by Ontario Energy Minister Todd Smith.

The first project is with Hydro One Networks and Peak Power, which will use up to 10 privately owned Nissan Leafs to test what is needed technically to support owners using their cars for vehicle-to-building charging during power outages. It will also study what type of financial incentives will convince EV owners to provide backup power for other users, and therefore the grid.

A second pilot program with solar specialist Sky Energy and engineering firm Hero Energy will study EVs, energy storage, and solar panels to further examine how consumers with potentially more power to offer the grid could do it securely, in part using blockchain technology. York University and Volta Research are other partners in the program, which has already produced an app that can help drivers choose when and how much power to provide the grid — if any.

The third program is with local utilities in Toronto and Waterloo, Ont., and will test a secure digital app that helps EV drivers see the current demands on the grid through improved grid coordination mechanisms, and potentially price an incentive to EV drivers not to charge their vehicles for a few hours. Drivers could also be actively further paid to provide some of the charge currently in their vehicle back to the grid.

It all adds up to $2.7 million in program funding from IESO ($1.1 million) and the associated partners.

“An EV charged in Ontario produces roughly three per cent of emissions of a gas fuelled car,” said IESO’s Carla Nell, vice-president of corporate relations and innovation at the announcement near Peak Power chargers in downtown Toronto. “We know that Ontario consumers are buying EVs, and expected to increase tenfold — so we have to support electrification.”

If these types of programs sound familiar, it may be because utilities in Ontario have been testing such vehicle-to-grid technologies soon after affordable EVs became available in the fall of 2011. One such program was run by PowerStream, now the called Alectra, and headed by Neetika Sathe, who is now Alectra’s vice-president of its Green Energy and Technology (GRE&T) Centre in Guelph, Ont.

The difference between now and those tests in the mid-2010s is that the upcoming wave of EV sales can be clearly seen on the horizon, and California's grid stability work shows how EVs can play a larger role.

“We can see the tsunami now,” she said, noting that cost parity between EVs and gas vehicles is likely four or five years away — without government incentives, she stressed. “Now it’s not a question of if, it’s a question of when — and that when has received much more clarity on it.”

Sathe sees a benefit in studying all these types of bi-directional power-flowing scenarios, but notes that they are future scenarios for years in the future, especially since bi-directional charging equipment — and the vehicles with this capability — are pricey, and largely still not here. What she believes is much closer is the ability to automatically communicate what the grid needs with EV drivers, as Nova Scotia Power pilots integration, and how they could possibly help. For a price, of course.

“If I can set up a system that says ‘oh, the grid is stressed, can you not charge for the next two hours? And here’s what we’ll offer to you for that,’ that’s closer to low-hanging fruit,” she said, noting that Alectra is currently testing out such systems. “Think of it the same way as offering your car for Uber, or a room on Airbnb.”

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.