Canada’s Clean Energy Sector Growth


Canada’s Clean Energy Sector

Electrical Testing & Commissioning of Power Systems

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$599
Coupon Price:
$499
Reserve Your Seat Today

Canada’s clean energy sector is expanding as Indigenous communities lead electricity transmission projects, drive sustainable growth, and strengthen energy independence through renewable power, community ownership, and grid connections across remote and regional areas of Canada.

 

What is Canada’s Clean Energy Sector?

Canada’s clean energy sector encompasses industries and initiatives that generate, transmit, and manage low-carbon electricity to meet the country's national climate goals. It emphasizes Indigenous participation, renewable innovation, and equitable economic growth.

✅ Expands renewable electricity generation and transmission

✅ Builds Indigenous-led ownership and partnerships

✅ Reduces emissions through sustainable energy transition

 

Canada’s clean energy sector is entering a pivotal era of transformation, with Indigenous communities emerging as leading partners in expanding electricity transmission and renewable infrastructure. These communities are not only driving projects that connect remote regions to the grid but also redefining what energy leadership and equity look like in Canada.

At a recent webinar co-hosted by the Canadian Climate Institute and the Indigenous Power Coalition, panellists discussed the growing wave of Indigenous-led electricity transmission projects and the policies needed to strengthen Indigenous participation. The event, moderated by Frank Busch, featured Margaret Kenequanash, CEO of Wataynikaneyap Power; Kahsennenhawe Sky-Deer, Grand Chief of the Mohawk Council of Kahnawà:ke; and Blaise Fontaine, Co-Founder of ProACTIVE Planning Inc. and Indigenous Power Coalition.

The discussion comes at a crucial moment for Canada’s clean energy transition. As the country races to meet its climate commitments and electrify new industries, demand for clean power is rising rapidly. Historically, energy development in Canada occurred on Indigenous lands without consent or fair participation, but today, Indigenous communities collectively represent the largest clean energy asset owners outside Crown and private utilities.

“There is a genuine appetite for Indigenous communities to not just own transmission projects but to also lead,” said Fontaine. He noted that Indigenous communities are increasingly setting the terms of engagement, selecting partners, and shaping projects in line with their cultural and environmental values.

One of the strongest examples of this transformation is the Wataynikaneyap (Watay) Power Project in northern Ontario, a 1,800-kilometre transmission line connecting 17 remote First Nations communities to the provincial grid. “Communities must fully understand what they are getting into, since it is their homelands that will be impacted,” said Kenequanash. She emphasized that the project’s success came from five years of inter-community meetings to agree on shared principles before any external engagement.

The panel also highlighted the Hertel–New York Interconnection Line, co-owned by Hydro-Québec and the Mohawk Council of Kahnawà:ke, as another milestone in Indigenous energy leadership. Sky-Deer noted that the project’s co-ownership model required Quebec’s National Assembly to pass Bill 13, a first-of-its-kind legal framework. “That was a breakthrough,” she said, “but it also shows that true partnership still depends on one-off exceptions rather than standard policy.”

Panellists agreed that Canada’s regulatory systems have not kept pace with Indigenous leadership. Fontaine called on governments to “think outside the box to avoid staying stuck in the status quo,” emphasizing the need for enabling policies that make Indigenous-led ownership the norm rather than the exception.

Financial readiness is another key factor driving Indigenous participation. Communities are now accessing capital through partnerships with financial institutions and government loan programs. The collaboration between the Mohawk Council of Kahnawà:ke and the Caisse de dépôt et placement du Québec exemplifies tailored financing and long-term investment that supports community ownership and sustainable growth.

True equity, however, goes beyond financial participation. “It’s not just about having a percentage stake,” Fontaine explained. “True equity means meaningful decision-making power and control.” Indigenous leaders are insisting on co-governance structures that align with their worldviews, prioritizing environmental protection, cultural respect, and intergenerational stewardship.

The benefits of this approach extend far beyond project economics. Communities involved in ownership experience tangible local benefits, including employment and training opportunities, as well as new investments in education and culture. Hydro-Québec’s $10 million contribution to the Kahnawà:ke Cultural Arts Center is one example of how partnerships can support cultural renewal and community development.

As Canada looks to build east–west electricity interties and expand renewable energy generation, Indigenous leadership is becoming increasingly central to national energy policy. Fontaine noted that this shift offers “even greater opportunities for Indigenous-led transmission as Canada connects its provinces rather than just exporting power south.”

On the National Truth and Reconciliation Day, panellists urged reflection on both the barriers that remain and the opportunities ahead. Indigenous leadership in Canada’s clean energy sector is proving that reconciliation can take tangible form, through ownership, partnership, and shared prosperity.

This transformation represents more than an energy transition; it’s a rebalancing of power, respect, and responsibility, carried out “in a good way,” as the panellists emphasized, and essential to building a clean, inclusive energy future for all Canadians.

 

Related Articles

 

Related News

California Takes the Lead in Electric Vehicle and Charging Station Adoption

California has consistently been at the forefront of electric vehicle (EV) adoption and the proliferation of EV charging stations in the United States, maintaining this position since 2016. According to recent estimates from our State Energy Data System (SEDS), California accounts for 37% of registered light-duty EVs in the U.S. and 27% of EV charging locations as of the end of 2022.

The vehicle stock data encompass all registered on-road, light-duty vehicles and exclude any previous vehicle sales no longer in operation. The data on EV charging locations include both private and public access stations for Legacy, Level 1, Level 2, and DC Fast charging ports, excluding EV chargers in single-family residences. There is a data series break between 2020 and 2021, when the U.S. Department of Energy updated its data to align with the Open Charge Point Interface (OCPI) international standard.

In 2022, the number of registered EVs in the United States surged to six times its 2016 figure, growing from 511,600 to 3.1 million, while the number of U.S. charging locations nearly tripled, rising from 19,178 to 55,015. Over the same period, California saw its registered EVs more than quadruple, jumping from 247,400 to 1.1 million, and its charging locations tripled, increasing from 5,486 to 14,822.

California's share of U.S. EV registrations has slightly decreased in recent years as EV adoption has spread across the country. In 2016, California accounted for approximately 48% of light-duty EVs in the United States, which was approximately 12 times more than the state with the second-highest number of EVs, Georgia. By 2022, California's share had decreased to around 37%, which was still approximately six times more than the state with the second-most EVs, Florida.

On the other hand, California's share of U.S. EV charging locations has risen slightly in recent years, partly due to the California Electric Vehicle Infrastructure Project (CALeVIP), which provides funding for the installation of publicly available EV charging stations. In 2016, approximately 25% of U.S. EV charging locations were in California, over four times as many as the state with the second-highest number, Texas. In 2022, California maintained its position with over four times as many EV charging locations as the state with the second-most, New York.

The growth in the number of registered EVs has outpaced the growth of EV charging locations in the United States. In 2016, there were approximately 27 EVs per charging location on average in the country. Alaska had the highest ratio, with 67 EVs per charging location, followed by California with 52 vehicles per location.

In 2022, the average ratio was 55 EVs per charging location in the United States. New Jersey had the highest ratio, with 100 EVs per charging location, followed by California with 75 EVs per location.

View more

UK leads G20 for share of electricity sourced from wind

Nearly a quarter of the UK’s electricity came from wind turbines in 2020 – making the country the leader among the G20 for share of power sourced from the renewable energy, a new analysis finds.

The UK also moved away from coal power at a faster rate than any other G20 country from 2015 to 2020, according to the results.

And it ranked second in the G20, behind Germany, for the proportion of electricity sourced from both wind and solar in 2020.

“It’s crazy how much wind has grown in the UK and how much it has offset coal, and how it’s starting to eat at gas,” Dave Jones, Ember’s global lead analyst, told The Independent.

But it is important to bear in mind that “we’re only doing a great job by the standards of the rest of the world”, he added.

Ember’s Global Electricity Review notes that the world’s power sector emissions were two per cent higher in 2020 than in 2015 – the year that countries agreed to slash their greenhouse gas pollution as part of the Paris Agreement.

Power generated from coal fell by a record amount from 2019 to 2020, the analysis finds. However, this decline was greatly facilitated by lockdowns introduced to stop the spread of Covid-19, which stifled electricity demand, the analysts say.

Coal is the most polluting of the fossil fuels. The UK government hopes to convince all countries to stop building new coal-fired power stations at Cop26, a climate conference that is to be held in Glasgow later this year.

UN chief Antonio Guterres has also called for all countries to end their “deadly addiction to coal”.

At a summit held earlier this month, he described ending the use of coal in electricity generation as the “single most important step” to meeting the Paris Agreement’s goal of limiting global warming to well below 2C above pre-industrial levels by 2100.

“There is definitely a concern that, in the pandemic year of 2020, coal hasn’t fallen as fast as it needed to,” said Mr Jones.

“There is concern that, once electricity demand returns, we won’t be seeing that decline in coal anymore.”

View more

Biden's interior dept. acts quickly on Vineyard Wind

Federal environmental officials have completed their review of the Vineyard Wind I offshore wind farm, moving the project that is expected to deliver clean renewable energy to Massachusetts by the end of 2023 closer to becoming a reality.

The U.S. Department of the Interior said Monday morning that its Bureau of Ocean Energy Management completed the analysis it resumed about a month ago, published the project's final environmental impact statement, and said it will officially publish notice of the impact statement in the Federal Register later this week.

"More than three years of federal review and public comment is nearing its conclusion and 2021 is poised to be a momentous year for our project and the broader offshore wind industry," Vineyard Wind CEO Lars Pedersen said. "Offshore wind is a historic opportunity to build a new industry that will lead to the creation of thousands of jobs, reduce electricity rates for consumers and contribute significantly to limiting the impacts of climate change. We look forward to reaching the final step in the federal permitting process and being able to launch an industry that has such tremendous potential for economic development in communities up and down the Eastern seaboard."

The 800-megawatt wind farm planned for 15 miles south of Martha's Vineyard was the first offshore wind project selected by Massachusetts utility companies with input from the Baker administration to fulfill part of a 2016 clean energy law. It is projected to generate cleaner electricity for more than 400,000 homes and businesses in Massachusetts, produce at least 3,600 jobs, reduce costs for Massachusetts ratepayers by an estimated $1.4 billion, and eliminate 1.68 million metric tons of carbon dioxide emissions annually.

Offshore wind power is expected to become an increasingly significant part of Massachusetts' energy mix. The governor and Legislature agree on a goal of net-zero carbon emissions by 2050, but getting there is projected to require having about 25 gigawatts of offshore wind power. That means Massachusetts will need to hit a pace in the 2030s where it has about 1 GW of new offshore wind power coming online each year.

"I think that's why today's announcement is so historic, because it does represent that culmination of work to understand how to permit and build a cost-effective and environmentally-responsible wind farm that can deliver clean energy to Massachusetts ratepayers, but also just how to do this from start to finish," said Energy and Environmental Affairs Secretary Kathleen Theoharides. "As we move towards our goal of probably [25 GW] of offshore wind by 2050 to hit our net-zero target, this does give us confidence that we have a much clearer path in terms of permitting."

She added, "There's a huge pipeline, so getting this project out really should open the door to the many additional projects up and down the East Coast that will come after it."

According to the American Wind Energy Association, there are expected to be 14 offshore projects totaling 9,112 MW of capacity in operation by 2026.

Susannah Hatch, the clean energy coalition director for the Environmental League of Massachusetts and a leader of the broad-based New England for Offshore Wind Regional group, called offshore wind farms like Vineyard Wind "the linchpin of our decarbonization efforts in New England." She said the Biden administration's quick action on Vineyard Wind is a positive sign for the burgeoning sector.

"Moving swiftly on responsibly developed offshore wind is critical to our efforts to mitigate climate change, and offshore wind also provides an enormous opportunity to grow the economy, create thousands of jobs, and drive equitable economic benefits through increased minority economic participation in New England," Hatch said.

With the final environmental impact statement published, Vineyard Wind still must secure a record of decision from BOEM, an air permit from the Environmental Protection Agency and sign-offs from the U.S. Army Corps of Engineers and the National Marine Fisheries Service to officially clear the way for the project that is on track to be the nation's first utility-scale offshore wind farm. BOEM must wait at least 30 days from the publication of the final environmental impact statement to issue a record of decision.

Project officials have said they expect the final impact statement and then a record of decision "sometime in the first half of 2021." That would allow the project to hit its financial close milestone in the second half of this year, begin on-shore work quickly thereafter, start offshore construction in 2022, begin installing turbines in 2023 and begin exporting power to the grid by late 2023, Pedersen said in January.

"Offshore energy development provides an opportunity for us to work with Tribal nations, communities, and other ocean users to ensure all decisions are transparent and utilize the best available science," BOEM Director Amanda Lefton said.

The commercial fishing industry has been among the most vocal opponents of aspects of the Vineyard Wind project and the Responsible Offshore Development Alliance (RODA) has repeatedly urged the new administration to ensure the voices of the industry are heard throughout the licensing and permitting process.

In comments submitted earlier this month in response to a BOEM review of an offshore wind project that is expected to deliver power to New York, RODA said the present is "a time of significant confusion and change in the U.S. approach to offshore wind energy (OSW) planning" and detailed mitigation measures it wants to see incorporated into all projects.

"To be clear, none of these requests are new -- nor hardly radical. They have simply been ignored again, and again, and again in a political push/pull between multinational energy companies and the U.S. government, leaving world-famous seafood, and the communities founded around its harvest, off the table," the group said in a press release last week. Some of RODA's suggestions were analyzed as part of BOEM's Vineyard Wind review.

Vineyard Wind has certainly taken a circuitous path to get to this point. The timeline for the project was upended in August 2019 when the Trump administration decided to conduct a much broader assessment of potential offshore wind projects up and down the East Coast, which delayed the project by almost a year.

When the Trump administration delayed its action on a final environmental impact statement last year, Vineyard Wind on Dec. 1 announced that it was pulling its project out of the federal review pipeline in order to complete an internal study on whether the decision to use a certain type of turbine would warrant changes to construction and operations plan. The Trump administration declared the federal review of the project "terminated."

Within two weeks of President Joe Biden being inaugurated, Vineyard Wind said its review determined no changes were necessary and the company resubmitted its plans for review. BOEM agreed to pick up where the Trump administration had left off despite the agency previously declaring its review terminated.

"It would appear that fishing communities are the only ones screaming into a void while public resources are sold to the highest bidder, as BOEM has reversed its decision to terminate a project after receiving a single letter from Vineyard Wind," RODA said.

The final environmental impact statement that BOEM published Monday showed that the federal regulators believe the Vineyard Wind I development as proposed will have "moderate" impacts on commercial fisheries and for-hire recreational fishing outfits, and that the project combined with other factors not related to wind energy development will have "major" impacts on commercial and recreational fishing ventures.

Vineyard Wind pointed Monday to the fishery mitigation agreements it has entered into with Massachusetts and Rhode Island, a fishery science collaboration with the University of Massachusetts Dartmouth's School of Marine Science and Technology, and an agreement with leading environmental organizations around the protection of the endangered right whale.

Responding to concerns about safe navigation among RODA and others in the fishing sector, Vineyard Wind and the four other developers holding leases for offshore wind sites off New England agreed to orient their turbines in fixed east-to-west rows and north-to-south columns spaced one nautical mile apart. Last year, the U.S. Coast Guard concluded that the grid layout was the best way to maintain maritime safety and ease of navigation in the offshore wind development areas south of Martha's Vineyard and Nantucket.

Since a 2016 clean energy law kicked off the state's foray into the offshore wind world, Massachusetts utilities have contracted for a total of about 1,600 MW between two projects, Vineyard Wind I and Mayflower Wind.

A joint venture of Shell and Ocean Winds North America, Mayflower Wind was picked unanimously in 2019 by utility executives to build and operate a wind farm approximately 26 nautical miles south of Martha's Vineyard and 20 nautical miles south of Nantucket. The 804-megawatt project is expected to be operational by December 2025.

Massachusetts and its utilities are expected to go out to bid for up to another 1,600 MW of offshore wind generation capacity later this year using authorization granted by the Legislature in 2018.

The climate policy bill that Gov. Charlie Baker returned to the Legislature with amendments more than a month ago would require that the executive branch direct Massachusetts utilities to buy an additional 2,400 MW of offshore wind power.

View more

CO2 output from making an electric car battery isn't equal to driving a gasoline car for 8 years

Electric vehicles are touted as an environmentally friendly alternative to gasoline powered cars, but one Facebook post claims that the benefits are overblown, and the vehicles are much more harmful to the planet than people assume.

A cartoon posted to Facebook on April 29, shows a car in one panel with "diesel" written on the side and the driver thinking "I feel so dirty." In another panel, a car has "electric" written on its side with the driver thinking "I feel so clean."

However, the electric vehicle is shown connected to what appears to be a factory that’s blowing dark smoke into the air.

Below the cartoon is a caption that claims "manufacturing the battery for one electric car produces the same amount of CO2 as running a petrol car for eight years."

This isn’t a new line of criticism against electric vehicles. Similar Facebook posts have taken aim at the carbon dioxide produced in the manufacturing of electric cars — specifically the batteries — to make the case that zero emissions vehicles aren’t necessarily clean.

Full electric vehicles require a large lithium-ion battery to store energy and power the motor that propels the car, according to Insider. The lithium-ion battery packs in an electric car are chemically similar to the ones found in cell phones and laptops.

Because they require a mix of metals that need to be extracted and refined, lithium-ion batteries take more energy to produce than the common lead-acid batteries used in gasoline cars to help start the engine.

How much CO2 is emitted in the production depends on where the lithium-ion battery is made — or specifically, how the electricity powering the factory is generated — according to Zeke Hausfather, a climate scientist and director of climate and energy at the Breakthrough Institute, an environmental research think tank.

Producing a 75 kilowatt-hour battery for a Tesla Model 3, considered on the larger end of batteries for electric vehicles, would result in the emission of 4,500 kilograms of CO2 if it was made at Tesla's battery factory in Nevada. That’s the emissions equivalent to driving a gas-powered sedan for 1.4 years, at a yearly average distance of 12,000 miles, Hausfather said.

If the battery were made in Asia, manufacturing it would produce 7,500 kg of carbon dioxide, or the equivalent of driving a gasoline-powered sedan for 2.4 years — but still nowhere near the eight years claimed in the Facebook post. Hausfather said the larger emission amount in Asia can be attributed to its "higher carbon electricity mix." The continent relies more on coal for energy production, while Tesla’s Nevada factory uses some solar energy. 

"More than half the emissions associated with manufacturing the battery are associated with electricity use," Hausfather said in an email to PolitiFact. "So, as the electricity grid decarbonizes, emissions associated with battery production will decline. The same is not true for sedan tailpipe emissions."

The Facebook post does not mention the electricity needs and CO2 impact of factories that build gasoline or diesel cars and their components. 

Another thing the Facebook post omits is that the CO2 emitted in the production of the battery can be offset over a short time in an electric car by the lack of tailpipe emissions when it’s in operation. 

The Union of Concerned Scientists found in a 2015 report that taking into account electricity sources for charging, an electric vehicle ends up reducing greenhouse gas emissions by about 50% compared with a similar size gas-powered car.

A midsize vehicle completely negates the carbon dioxide its production emits by the time it travels 4,900 miles, according to the report. For full size cars, it takes 19,000 miles of driving.

The U.S. Energy Department’s Office of Energy Efficiency and Renewable Energy also looked at the life cycle of electric vehicles — which includes a car’s production, use and disposal — and concluded they produce less greenhouse gases and smog than gasoline-powered vehicles.

The agency also found drivers could further lower CO2 emissions by charging with power generated by a renewable energy source. 

Our ruling
A cartoon shared on Facebook claims the carbon dioxide emitted from the production of one electric car battery is the equivalent to driving a gas-powered vehicle for eight years.

The production of lithium-ion batteries for electric cars emits a significant amount of carbon dioxide, but nowhere near the level claimed in the cartoon. The emissions from battery production are equivalent to driving a gasoline car for one or two years, depending on where it’s produced, and those emissions are effectively offset over time by the lack of tailpipe emissions when the car is on the road. 

We rate this claim Mostly False.    

View more

The government's 2035 electric vehicle mandate is delusional

Whether or not you want one, can afford one or think they will do essentially nothing to stop global warming, electric vehicles are coming to Canada en masse. This week, the Canadian government set 2035 as the “mandatory target” for the sale of zero-emission SUVs and light-duty trucks.

That means the sale of gasoline and diesel cars has to stop by then. Transport Minister Omar Alghabra called the target “a must.” The previous target was 2040.

It is a highly aspirational plan that verges on the delusional, even if it earns Canada – a perennial laggard on the emission-reduction front – a few points at climate conferences. Herewith, a few reasons why the plan may be unworkable, unfair or less green than advertised.

Liberals say by 2035 all new cars, light-duty trucks sold in Canada will be electric

Parkland to roll out electric-vehicle charging network in B.C. and Alberta

Sticker shock: There is a reason why EVs remain niche products in almost every market in the world (the notable exception is in wealthy Norway): They are bloody expensive. Unless EV prices drop dramatically in the next decade, Ottawa’s announcement will price the poor out of the car market. Transportation costs are a big issue with the unrich. The 2018 gilets jaunes mass protests in France were triggered by rising fuel costs.

While some EVs are getting cheaper, even the least expensive ones are about double the price of a comparable product with an internal combustion engine. Most EVs are luxury items. The market leader in Canada and the United States is Tesla. In Canada the cheapest Tesla, the Model 3 (“standard range plus” version), costs $49,000 before adding options and subtracting any government purchase incentives. A high-end Model S can set you back $170,000.

To be sure, prices will come down as production volumes increase. But the price decline might be slow for the simple reason that the cost of all the materials needed to make an EV – copper, cobalt, lithium, nickel among them – is climbing sharply and may keep climbing as production increases, straining supply lines.

Lithium prices have doubled since November. Copper has almost doubled in the past year. An EV contains five times more copper than a regular car. Glencore, one of the biggest mining companies, estimated that copper production needs to increase by a million tonnes a year until 2050 to meet the rising demand for EVs and wind turbines, a daunting task given the dearth of new mining projects.

Will EVs be as cheap as gas cars in a decade or so? Impossible to say, but given the recent price trends for raw materials, probably not.

Not so green: There is no such thing as a zero-emission vehicle, even if that’s the label used by governments to describe battery-powered cars. So think twice if you are buying an EV purely to paint yourself green.

In regions in Canada and elsewhere in the world that produce a lot of electricity from fossil-fuel plants, driving an EV merely shifts the output of greenhouse gases and pollutants from the vehicle itself to the generating plant (according to the government, more than 19 per cent of Canada’s electricity comes from coal, natural gas and oil; in the United States, 60 per cent).

An EV might make sense in Quebec, where almost all the electricity comes from renewable sources. An EV makes little sense in Saskatchewan, where only 17 per cent comes from renewables – the rest from fossil fuels. In Alberta, only 8 per cent comes from renewables.

The EV supply chain is also energy-intensive. And speaking of the environment, recycling or disposing of millions of toxic car batteries is bound to be a grubby process.

Where’s the juice?: Since the roofs of most homes in Canada and other parts of the world are not covered in solar panels, plugging in an EV to recharge the battery means plugging into the electrical grid. What if millions of cars get plugged in at once on a hot day, when everyone is running air conditioners?

The next few decades could emerge as an epic energy battle between power-hungry air conditioners, whose demand is rising as summer temperatures rise, and EVs. The strain of millions of AC units running at once in the summer of 2020 during California’s run of record-high temperatures pushed the state into rolling blackouts. A few days ago, Alberta’s electricity system operator asked Albertans not to plug in their EVs because air conditioner use was straining the electricity supply.

According to the MIT Technology Review, rising incomes, populations and temperatures will triple the number of air conditioners used worldwide, to six billion, by mid-century. How will any warm country have enough power to recharge EVs and run air conditioners at the same time? The Canadian government didn’t say in its news release on the 2035 EV mandate. Will it fund the construction of new fleets of power stations?

The wrong government policy: The government’s announcement made it clear that widespread EV use – more cars – is central to its climate policy. Why not fewer cars and more public transportation? Cities don’t need more cars, no matter the propulsion system. They need electrified buses, subways and trains powered by renewable energy. But the idea of making cities more livable while reducing emissions is apparently an alien concept to this government.

View more

Green energy in 2023: Clean grids, Alberta, batteries areas to watch

The year 2022 may go down as the most successful one yet for climate action. It was marked by monumental shifts in energy policy from governments, two COP meetings and heightened awareness of the private sector's duty to act.

In the U.S., the Inflation Reduction Act (IRA) was the largest federal legislation to tackle climate change, injecting $369 billion of tax credits and incentives for clean energy, electric vehicles, carbon capture, energy storage, energy efficiency and research.

The European Union accelerated its green policies to transition away from fossil fuels and overhauled its carbon market. China and India made strides on clean energy and strengthened climate policies. The International Energy Agency made its largest revision yet as renewables continued to proliferate.

The U.S. ratified the Kigali Amendment, one of the strongest global climate policies to date.

Canada was no different. The 2022 Fall Economic Statement was announced to respond to the IRA, offering an investment tax credit for renewables, clean technology and green hydrogen alongside the Canada Growth Fund. The federal government also proposed a 2035 deadline for clean electrical grids and a federal zero-emissions vehicle (ZEV) sales mandate for light-duty vehicles.

With the momentum set, more action is promised in 2023: Canadian governments are expected to unveil firmer details for the decarbonization of electricity grids to meet 2035 deadlines; Alberta is poised to be an unlikely leader in clean energy.

Greater attention will be put on energy storage and critical minerals. Even an expected economic downturn is unlikely to stop the ball that is rolling.

Shane Doig, the head of energy and natural resources at KPMG in Canada, said events in 2022 demonstrated the complexity of the energy transformation and opened “a more balanced conversation around how Canada can transition to a lower carbon footprint, whilst balancing the need for affordable, readily available electricity.”


Expect further developments on clean electricity
2023 shapes up as a crucial year for Canada’s clean electricity grid.

The federal government announced it will pursue a net-zero electricity grid by 2035 under the Clean Electricity Regulations (CER). It requires mass renewable and clean energy adoption, phasing out fossil fuel electricity generation, rapid electrification and upgrading transmission and storage while accommodating growth in electricity demand.

The first regulations for consultation are expected early in 2023. The plans will lay out pollution regulations and costs for generating assets to accelerate clean energy adoption, according to Evan Pivnick, the clean energy program manager of Clean Energy Canada.

The Independent Energy System Operator of Ontario (IESO) recently published a three-part report suggesting a net-zero conversion for Ontario could cost $400 billion over 25 years to keep up with increasing electricity demand.

Power Utility released research by The Atmospheric Fund that suggests Ontario could reach a net-zero grid by 2035 across various scenarios.

Dale Beguin, executive vice president at the Canadian Climate Institute, said in 2023 he hopes to see more provincial regulators and governments send “strong signals to the utilities” that a pathway to net-zero is realistic.

He recounted increasing talk from investors in facilities such as automotive plants and steel mills who want clean electricity guarantees before making investments. “Clean energy is a comparative advantage,” he said, which puts the imperative on organizations like the IESO to lay out plans for bigger, cleaner and flexible grids.

Beguin and Pivnick said they are watching British Columbia closely because of a government mandate letter setting a climate-aligned energy framework and a new mandate for the British Columbia Utilities Commission. Pivnick said there may be lessons to be drawn for other jurisdictions.

 

Alberta’s unlikely rise as a clean energy leader
Though Alberta sits at the heart of Canada’s oil and gas industry and at the core of political resistance to climate policy, it has emerged as a front runner in renewables adoption.

Billion of dollars for wind and solar projects have flowed into Alberta. The world’s largest hydrogen plant will be built near Edmonton, supercharged with $461 million of government money, and joined by the Hydrogen Centre of Excellence.

Pivnick said an “underappreciated story” is how Alberta leaned into renewables through its “unique market.” Alberta leads in renewables and power purchase agreements because of its deregulated electricity market.

Unlike most provinces, Alberta enables companies to go directly to solar and wind developers to strike deals, rather than through utilities. It incentivizes private investment, lowers costs and helps meet increasing demand, which Nagwan Al-Guneid, the director of the Business Renewables Centre - Canada at the Pembina Institute, said is “is the No. 1 reason we see this boom in renewables in Alberta.”

Beguin noted Alberta’s innovative ‘reverse auctions,’ where the province sets a competitive bidding process to provide electricity. It ended up making electricity “way cheaper” due to the economic competitiveness of renewables, while Alberta profited and added clean energy to its grid.

In 2019, the Business Renewables Centre-Canada established a target of 2 GW of renewable energy deals by 2025. The target was exceeded in 2022, which led to a revised goal for 10 GW of renewables by 2030.

Al-Guneid wants to see other jurisdictions help more companies buy renewables. She does not universally prescribe deregulation, however, as other mechanisms such as sleeving exist.

Alberta will update its industrial carbon pricing in 2023, requiring large emitters to pay $65 per tonne of carbon dioxide. The fee climbs $15 per tonne each year until it reaches $175 per tonne in 2030. Al-Guneid said as the tax increases, demand for renewable energy certificates will also increase in Alberta.

Pivnick noted Alberta will have an election in 2023, which could have ramifications for energy policy.

 

Batteries and EV leadership
Manufacturing clean energy equipment, batteries and storage requires enormous quantities of minerals. With the 2022 Fall Economic Statement and the Critical Minerals Strategy, Canada is taking important steps to lead on this front.

Pivnick pointed to battery supply chain investments in Ontario and Quebec as part of Canada’s shift from “a fuel-based (economy) to a materials-based economy” to provide materials necessary for wind turbines and solar panels. The Strategy showed an understanding Canada has a major role to meet its allies’ needs for critical minerals, whether it’s the resources or supply chains.

There is also an opportunity for Canada to forge ahead on energy storage. The Fall Economic Statement proposes a 30 per cent tax credit for investments into energy storage. Pivnick suggested Canada invest further into research and development to explore innovations like green hydrogen and pump storage.

Doig believes Canada is “well poised” for batteries, both in terms of the technology and sustainable mining of minerals like cobalt, lithium and copper. He is bullish for Canada’s electrification based on its clean energy use and increased spending on renewables and energy storage.

He said the federal ZEV mandate will drive increased demand for the power, utilities, and oil and gas industries to respond.

The majority of gas stations, which are owned by the nation’s energy industry, will need to be converted into EV charging stations.

 

Offsetting a recession 
One challenge will be a poor economic forecast in the near term. A short "technical recession" is expected in 2023.

Inflation remains stubbornly high, which has forced the Bank of Canada to hike interest rates. The conditions will not leave any industry unscathed, but Doig said Canada's decarbonization is unlikely to be halted.

“Whilst a recession would slow things down, the concern around energy security definitely helps offset that concern,” he said.

Energy security is top of mind for governments and private organizations, accelerating the shift to renewables.

Doig said there is a general feeling a recession would be short-lived, meaning it would be unlikely to impact long-term projects in hydrogen, liquified natural gas, carbon capture and wind and solar.

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.