Electricity News in May 2019
E.ON to Commission 2500 Digital Transformer Stations
E.ON Digital Transformer Stations modernize distribution grids with smart grid monitoring, voltage control, and remote switching, enabling bidirectional power flow, renewables integration, and rapid fault isolation from centralized grid control centres.
Key Points
Remotely monitored grid nodes enhancing smart grid stability and speedier fault response.
✅ Real-time voltage and current data along feeders and laterals
✅ Remote switching cuts outage duration and truck rolls
✅ Supports renewables and bidirectional power flows
E.ON plans to commission 2500 digital transformer stations in the service areas of its four German distribution grid operators - Avacon, Bayernwerk, E.DIS and Hansewerk - by the end of 2019. Starting this year, E.ON will solely install digital transformer stations in Germany, aligning with 2019 grid edge trends seen across the sector. This way, the digital grid is quite naturally being integrated into E.ON's distribution grids.
With these transformer stations as the centrepiece of the smart grid, it is possible to monitor and control using synchrophasors in the power grid from the grid control centre. This helps to maintain a more balanced utilisation of the grid and, with increasing complexity, ensures continued security of supply.
Until now, the current and voltage parameters required for safe grid operation could usually only be determined at the beginning of a power line, where there is usually a grid substation in place. Controlling current flow and voltage in the downstream system was physically impossible.
In the future, grids will have to function in both directions: they will bring electricity to the customer while at the same time collecting and transmitting more and more green electricity via HVDC technology where appropriate. This requires physical data to be made available along the entire route. To ensure security of supply, voltage fluctuations must be kept within narrowly defined limits and the current flow must not exceed the specified value, while reducing line losses with superconducting cables remains an important consideration. To manage this challenge, it is necessary to install digital technology.
The possibility of remotely controlling grids also reduces downtimes in the event of faults and supports a smarter electricity infrastructure approach. With the new technology, our grid operators can quickly and easily access the stations of the affected line. The grid control centres can thus limit and eliminate faults on individual line sections within a very short space of time.
Related News
Britain Goes Full Week Without Coal Power
Britain Coal-Free Week signals a historic shift to clean energy, with zero coal power, increased natural gas and renewables, lower greenhouse gas emissions, and ambitious UK energy policy targeting a 2025 coal phase-out and decarbonization.
Key Points
A seven-day period with no coal power in the UK, signaling cleaner energy and progress on emission reductions.
✅ Seven days of zero coal generation in the UK
✅ Natural gas and renewables dominated the electricity mix
✅ Coal phase-out targeted by 2025; emissions cuts planned
For the first time in a century, Britain weaned itself off of coal consumption for an entire week, a coal-free power record for the country.
Reuters reported that Britain went seven days without relying on any power generated by coal-powered stations as the share of coal in the grid continued to hit record lows.
The accomplishment is symbolic of a shift to more clean energy sources, with wind surpassing coal in 2016 and the UK leading the G20 in wind share as of recent years; Britain was home to the first coal-powered plant back in the 1880s.
Today, Britain has some aggressive plans in place to completely eliminate its coal power generation permanently by 2025, with a plan to end coal power underway. In addition, Britain aims to cut its total greenhouse gas emissions by 80 percent from 1990 levels within the next 30 years.
Natural gas was the largest source of power for Britain in 2018, providing 39 percent of the nation's total electricity, as the Great Britain generation dashboard shows. Coal contributed only about 5 percent, though low-carbon generation stalled in 2019 according to reports. Burning natural gas also produces greenhouse gases, but it is much more efficient and greener than coal.
In the U.S., 63.5 percent of electricity generated in 2018 came from fossil fuels. About 35.1 percent was produced from natural gas and 27.4 percent came from coal. In addition, 19.3 percent of electricity came from nuclear power and 17.1 percent came from renewable energy sources, according to the U.S. Energy Information Administration.
Related News
Iran turning thermal power plants to combined cycle to save energy
Iran Combined-Cycle Power Plants drive energy efficiency, cut greenhouse gases, and expand megawatt capacity by converting thermal units; MAPNA-led upgrades boost grid reliability, reduce fuel use, and accelerate electricity generation growth nationwide.
Key Points
Upgraded thermal plants that reuse waste heat to boost efficiency, cut emissions, and add capacity to Iran's grid.
✅ 27 thermal plants converted; 160 more viable units identified
✅ Adds 12,600 MW capacity via heat recovery steam generators
✅ Combined-cycle share: 31.2% of 80.509 GW capacity
Iran has turned six percent of its thermal power plans into combined cycle plants in order to reduce greenhouse gases and save energy, with potential to lift thermal plants' PLF under rising demand, IRNA reported, quoting an energy official.
According to the MAPNA Group’s Managing Director Abbas Aliabadi, so far 27 thermal power plants have been converted to combined-cycle ones, aligning with Iran’s push to transmit power to Europe as a regional hub.
“The conversion of a thermal power plant to a combined cycle one takes about one to two years, however, it is possible for us to convert all the country’s thermal power plants into combined cycle plants over a five-year period.
Currently, a total of 478 thermal power plants are operating throughout Iran, of which 160 units could be turned into combined cycle plants. In doing so, 12,600 megawatts will be added to the country’s power capacity, supporting ongoing exports such as supplying a large share of Iraq's electricity under existing arrangements.
Related cross-border work includes deals to rehabilitate Iraq's power grid that support future exchanges.
As reported by IRNA on Wednesday, Iran’s Nominal electricity generation capacity has reached 80,509 megawatts (80.509 gigawatts), and it is deepening energy cooperation with Iraq to bolster regional reliability. The country increased its electricity generation capacity by 500 megawatts (MW) compared to the last year (ended on March 20).
Currently, with a total generation capacity of 25,083 MW (31.2 percent) combined cycle power plants account for the biggest share in the country’s total power generation capacity followed by gas power plants generating 29.9 percent, amid global trends where renewables are set to eclipse coal and regional moves such as Israel's coal reduction signal accelerating shifts. EF/MA
Related News
Ireland goes 25 days without using coal to generate electricity
Ireland Coal-Free Electricity Record: EirGrid reports 25 days without coal on the all-island grid, as wind power, renewables, and natural gas dominated generation, cutting CO2 emissions, with Moneypoint sidelined by market competitiveness.
Key Points
It is a 25-day period when the grid used no coal, relying on gas and renewables to reduce CO2 emissions.
✅ 25 days coal-free between April 11 and May 7
✅ Gas 60%, renewables 30% of generation mix
✅ Eurostat: 6.8% drop in Ireland's CO2 emissions
The island of Ireland has gone a record length of time without using coal-fired electricity generation on its power system, Britain's week-long coal-free run providing a recent comparator, Eirgrid has confirmed.
The all-island grid operated without coal between April 11th and May 7th – a total of 25 days, it confirmed. This is the longest period of time the grid has operated without coal since the all-island electricity market was introduced in 2007, echoing Britain's record coal-free stretch seen recently.
Ireland’s largest generating station, Moneypoint in Co Clare, uses coal, with recent price spikes in Ireland fueling concerns about dispatchable capacity, as do some of the larger generation sites in Northern Ireland.
The analysis coincides with the European statistics agency, Eurostat publishing figures showing annual CO2 emissions in Ireland fell by 6.8 per cent last year; partly due to technical problems at Moneypoint.
Over the 25-day period, gas made up 60 per cent of the fuel mix, while renewable energy, mainly wind, accounted for 30 per cent, echoing UK wind surpassing coal in 2016 across the market. Coal-fired generation was available during this period but was not as competitive as other methods.
EirGrid group chief executive Mark Foley said this was “a really positive development” as coal was the most carbon intense of all electricity sources, with its share hitting record lows in the UK in recent years.
“We are acutely aware of the challenges facing the island in terms of meeting our greenhouse gas emission targets, mindful that low-carbon generation stalled in the UK in 2019, through the deployment of more renewable energy on the grid,” he added.
Last year 33 per cent of the island’s electricity came from renewable energy sources, German renewables surpassing coal and nuclear offering a parallel milestone, a new record. Coal accounted for 9 per cent of electricity generation, down from 12.9 per cent in 2017.
Related News
California just made more clean energy than it needed
CAISO Net Negative Emissions signal moments when greenhouse gas intensity of serving ISO demand drops below zero, driven by high renewable generation, low load, strong solar exports, and imports accounting in the California grid.
Key Points
Moments when CAISO's CO2 to serve demand is below zero, driven by renewables, exports, and import accounting.
✅ Calculated using imports and exports to serve ISO demand
✅ Occur during high solar output, low weekend load
✅ Coincide with curtailment and record renewable penetration
We’re a long way from the land of milk and honey, but on Easter Sunday – for about an hour – we got a taste.
On Sunday, at 1:55 PM Pacific Time the California Independent Systems Operator (CAISO) reported that greenhouse gas emissions necessary to serve its demand (~80% of California’s electricity demand on an annual basis), was measured at a rate -16 metric tons of CO2 per hour. Five minutes later, the value was -2 mTCO2/h, before it crept back up to 40 mTCO2/h at 2:05 PM PST. At 2:10 PST though it fell back to -86 mTCO2/h and stayed negative until 3:05 PM PST, even as global CO2 emissions flatlined in 2019 according to the IEA.
This information was brought to the attention of pv magazine via tweet from eagle eye Jon Pa after CAISO’s site first noted the negative values:
The region was still generating CO2 though, as natural gas, biogas, biomass, geothermal and even coal plants were running and pumping out emissions, even as potent greenhouse gases declined in the US under control efforts. CAISO’s Greenhouse Gas Emission Tracking Methodology, December 28, 2016 (pdf) notes the below calculations to create the value what it terms, “Total GHG emissions to serve ISO demand”:
Of importance to note is that to get to the net negative value, CAISO considered all electricity imports and exports, a reminder that climate policy shapes grid operations across North America. And as can be noted in the image below the CO2 intensity of imports during the day rapidly declined as the sun came up, first going negative around 9:05 AM PST, and mostly staying so until just before 6 PM PST.
During this same weekend, other records were noted (reiterating that we’re in record setting season and as the state pursues its 100% carbon-free mandate now in law) such as a new electricity export record of greater than 2 GW and total renewable electricity as part of total demand at greater than 70%.
At the peak negative moment of 2:15 PM PST, -112 mTCO2/h seen below, the total amount of clean instantaneous generation being used in the power grid region was 17 GW, a far cry from heat-driven reliability strains like rolling blackout warnings that arise during extreme demand, with renewables giving 76% of the total, hydro 14%, nuclear 13% and imports of -12% countering the CO2 coming from just over 1.4 GW of gas generation.
Also of importance are a few layers of nuance in the electricity demand charts. First off we’re in the shoulder seasons of California – nice cool weather before the warmth of summer drives air conditioning demand. Additional the weekend electricity demand is always lower, as well, Easter Sunday might have had an affect, whereas in colder regions Calgary’s electricity use can soar during frigid snaps.
Lastly to note was the amount of electricity from solar and wind generation being curtailed. And while the Sunday numbers weren’t available yet, the below image noted Saturday with 10 GWh in total being curtailed (pdf) – peaking at over 3.2 GW of instantaneous mostly solar power even as solar is now the cheapest electricity according to the IEA, in the hours of 2 and 3 PM PST. On an annualized basis, less than 2% of total potential solar electricity was curtailed in 2018.
Related News
Maine Governor calls for 100% renewable electricity
Maine Climate Council Act targets 80% renewable power by 2030 and 100% by 2050, slashing greenhouse gas emissions via clean electricity, grid procurement, long-term contracts, wind and hydro integration, resilience planning, and carbon sequestration.
Key Points
A Maine policy forming a Climate Council to reach 80% renewables in 2030 100% in 2050 and cut greenhouse gas emissions.
✅ 80% renewable electricity by 2030; 100% by 2050.
✅ 45% GHG cut by 2030; 80% by 2050.
✅ Utility procurement authority for clean capacity and energy.
The winds of change have shifted and are blowing Northward, as Maine’s Governor, Janet T. Mills, has put forth an act establishing a Climate Council to guide the state’s consumption to 80% renewable electricity in 2030 and 100% by 2050, echoing New York's Green New Deal ambitions underway.
The act, LR 2478 (pdf), also sets a goal of reducing greenhouse gas emissions by 45% in 2030 and 80% by 2050. The document will be submitted to the state Legislature for consideration.
The commission would have the authority to direct investor owned transmission and distribution utilities to run competitive procurement processes, and enter into long-term contracts for capacity resources, energy resources, renewable energy credit contracts, and participate in regional programs, as these all lead toward the clean electricity and emissions-reducing goals that mirror California's 100% mandate debates today.
The Climate Council would convene industry working groups, including Scientific and Technical, Transportation, Coastal and Marine, Energy, and Building & Infrastructure working groups, plus others as needed, where examples like New Zealand's electricity transition could inform discussions.
Membership within the council would include two members of the State Senate, two members of the House, a tribal representative, many department commissioners (Education, Defense, Transportation, etc.), multiple directors, business representatives, environmental non-profit members, and climate science and resilience representatives as well.
The council would update the Maine State Climate Plan every four years, and solicit input from the public and report out progress on its goals every two years, similar to planning underway in Minnesota's carbon-free plan framework. The first Climate Action Plan would be submitted to the legislature by December 1, 2020.
Specifically, the responsibilities of the Scientific and Technical Subcommittee were laid out. The group would be scheduled to meet at least every six months, beginning no later than October 1, 2019. The group would be tasked with reviewing existing scientific literature, including net-zero electricity pathways research, to use it as guidance, recognizing gaps in the state’s knowledge, and guiding outside experts to ascertain this knowledge. The group would consider ocean acidification, and climate change effects on the state’s species; establish science-based sea-level rise projections for the state’s coastal regions by December 1, 2020; create a climate risk map for flooding and extreme weather events; and consider carbon sequestration via biomass growth.
The state’s largest power plants (above image), generate about 31% from gas, 28% from wood and 41% from hydro+wind. Already, the state has a very clean electricity profile, much like efforts to decarbonize Canada's power sector continue apace. Below, the U.S. Energy Information Administration (EIA) notes that 51% of electricity generation within the state comes from mostly wind+hydro, with a small touch from solar power. The state also gets 24% from wood and other biomass, which would lead some to argue that the state is already at 75% “renewable electricity”. The Governor’s document does reference wind power specifically as a renewable, however, no other specific electricity source. And there is much reference to forestry, agriculture, and logging – specifically noting carbon sequestration – but nothing regarding electricity.
The state’s final 25% of electricity mostly comes from natural gas, even as renewable electricity momentum builds across North America, with this author choosing to put “other” under the fossil percentage noted above.
Related News
Tesla’s Powerwall as the beating heart of your home
GMP Tesla Powerwall Program replaces utility meters with smart battery storage, enabling virtual power plant services, demand response, and resilient homes, integrating solar readiness, EV charging support, and smart grid controls across Vermont households.
Key Points
Green Mountain Power uses Tesla Powerwalls as smart meters, creating a VPP for demand response and home backup.
✅ $30 monthly for 10 years or $3,000 upfront for two units
✅ Utility controls batteries for peak shaving and demand response
✅ Enables backup power, solar readiness, and EV charging support
There are more than 100 million single-family homes in the United States of America. If each of these homes were to have two 13.5 kWh Tesla Powerwalls, that would total 2.7 Terawatt-hours worth of electricity stored. Prior research has suggested that this volume of energy storage could get us halfway to the 5.4 TWh of storage needed to let the nation get 80% of its electricity from solar and wind, as states like California increasingly turn to grid batteries to support the transition.
Vermont utility Green Mountain Power (GMP) seeks to remove standard electric utility metering hardware and replace it with the equipment inside of a Tesla Powerwall, as part of a broader digital grid evolution underway. Mary Powell, President and CEO of Green Mountain Power, says, “We have a vision of a battery system in every single home” and they’ve got a patent pending software solution to make it happen.
The Resilient Home program will install two standard Tesla Powerwalls each in 250 homes in GMP’s service area. The homeowner will pay either $30 a month for ten years ($3,600), or $3,000 up front. At the end of the ten year period, payments end, but the unit can stay in the home for an additional five years – or as long as it has a usable life.
A single Powerwall costs approximately $6,800, making this a major discount.
GMP notes that the home must have reliable internet access to allow GMP and Tesla to communicate with the Powerwall. GMP will control the functions of the Powerwall, effectively operating a virtual power plant across participating homes, expanding the scope of programs like those that saved the state’s ratepayers more than $500,000 during peak demand events last year. The utility specifically notes that customers agree to share stored energy with GMP on several peak demand days each year.
The hardware can be designed to interact with current backup generators during power outages, or emerging fuel cell solutions that maintain battery charge longer during extended outages, however, the units will not charge from the generator. As noted the utility will be making use of the hardware during normal operating times, however, during a power outage the private home owner will be able to use the electricity to back up both their house and top off their car.
The utility told pv magazine USA that the Powerwalls are standard from the factory, with GMP’s patent pending software solution being the special sauce (has a hint of recent UL certifications). GMP said the program will also get home owners “adoption ready” for solar power, including microgrid energy storage markets, and other smart devices.
Sonnen’s ecoLinx is already directly interacting with a home’s electrical panel (literally throwing wifi enabled circuit breakers). Now with Tesla Powerwalls being used to replace utility meters, we see one further layer of integration that will lead to design changes that will drive residential solar toward $1/W. Electric utilities are also experimenting with controlling module level electronics and smart solar inverters in 100% residential penetration situations. And of course, considering that California is requiring solar – and probably storage in the future – in all new homes, we should expect to see further experimentation in this model. Off grid solar inverter manufacturers already include electric panels with their offerings.
If we add in the electric car, and have vehicle-to-grid abilities, we start to see a very strong amount of electricity generation and energy storage, helping to keep the lights on during grid stress, potentially happening in more than 100 million residential power plants. Resilient homes indeed.
Related News
Energy freedom and solar’s strategy for the South
South Carolina Energy Freedom Act lifts net metering caps, reforms PURPA, and overhauls utility planning to boost solar competition, grid resiliency, and consumer choice across the Southeast amid Santee Cooper debt and utility monopoly pressure.
Key Points
A bipartisan reform lifting net metering caps, modernizing PURPA, and updating utility planning to expand solar.
✅ Lifts net metering cap to accelerate rooftop and community solar.
✅ Reforms PURPA contracts to enable fair pricing and transparent procurement.
✅ Modernizes utility IRP and opens markets to competition and customer choice.
The South Carolina House has approved the latest version of the Energy Freedom Act, a bill that overhauls the state’s electricity policies, including lifting the net metering caps and reforming PURPA implementation and utility planning processes in a way that advocates say levels the playing field for solar at all scales.
With Governor Henry McMaster (R) expected to sign the bill shortly, this is a major coup not just for solar in the state, but the region. This is particularly notable given the struggle that solar has had just to gain footing in many parts of the South, which is dominated by powerful utility monopolies and conservative politicians.
Two days ago when the bill passed the Senate we covered the details of the policy, but today we’re going to take a look at the politics of getting the Energy Freedom Act passed, and what this means for other Southern states and “red” states.
Opportunity amid crisis
The first thing to note about this bill is that it comes within a crisis in South Carolina’s electricity sector. This was the first legislative session following state-run utility Santee Cooper’s formal abandonment of a project to build two new reactors at the Virgil C. Sumner nuclear power plant, on which work stopped nearly two years ago.
Santee Cooper still holds $4 billion in construction debt related to the nuclear projects. According to an article in The State, this is costing its customers $5 per month toward the current debt, and this will rise to $13 per month for the next 40 years.
Such costs are particularly unwelcome in South Carolina, which has the highest annual electricity bills in the nation due to a combination of very high electricity usage driven by widespread air conditioning during the hot summers and higher prices per unit of power than other Southern states.
Following this fiasco, Santee Cooper’s CEO has stepped down, and the state government is currently considering selling the utility to a private entity. According to Maggie Clark, southeast state affairs senior manager for Solar Energy Industries Association, all of this set the stage for the bill that passed today.
“South Carolina is in a really ripe state for transformational energy policy in the wake of the VC Sumner nuclear plant cancellation,” Clark told pv magazine. “They were looking for a way forward, and I think this bill really provided them something to champion.”
Renewable energy policy for red states
This major win for solar policy comes in a state where the Republican Party holds majorities in both houses of the state’s legislature and sends bills to a Republican governor.
Broadly speaking, Republican politicians seldom show the level of interest in supporting renewable energy that Democrats do either at the state or national level, and show even less inclination to act to address greenhouse gas emissions. In fact, the 100% clean energy mandates that are being implemented in four states and Washington D.C. have only passed with Democratic trifectas, in other words with Republicans controlling neither house of the state legislature nor the governor’s office. (Note: This does not apply to Puerto Rico, which has a different party structure to the rest of the United States)
However, South Carolina shows there are Republican politicians who will support pro-renewable energy policies, and circumstances under which Republican majorities will vote for legislation that aids the adoption of solar. And these specific circumstances speak to both different priorities and ideological differences between the two parties.
SEIA’s Maggie Clark emphasizes that the Energy Freedom Act was about reforming market rules. “This was a way to provide a program that did not provide subsidies or incentives in any way, but to really open the market to competition,” explains Clark. “I think that appealing to conservatives in the South about energy independence and resiliency and ultimately cost savings is the winning message on this issue.”
Such messaging in South Carolina is not an accident. Not only has such messaging been successful in the past, but coalition partner Vote Solar paid for polling to find what messages resounded with the state’s voters, and found that choice and competition were likely to resound.
And all of this happened in the context of what Clark describes as an “extremely well-resourced effort”, with SEIA in particular dedicating national attention and resources to the state – as part of an effort by President and CEO Abigail Hopper to shift attention more towards state-level policy. Maggie Clark is one of two new regional staff who Hopper has hired, and SEIA’s first staff member focused on Southern states.
“Absolutely the South is a prioritized region,” Hopper told pv magazine, noting that three Southern states – the Carolinas and Florida – are among the 12 states that the organization has identified to work on this year. “It became clear that as a region it needed more attention.”
SEIA is not expecting fly-by-night victories, and Hopper attributes the success in South Carolina not only to a broad coalition, but to years of work on the ground in the state.
Nor is SEIA the only organization to grow its presence in the region. Vote Solar now has two full time staff located in the South, whereas two years ago its sole staff member dedicated to the region was located in Washington D.C.
Ideology versus reality in the South
The Energy Freedom Act aligns with conservative ideas about small government and competition, but the American right is not monolithic, nor do political ideas and actions always line up neatly, as other successful policies in other states in the region show
By far the largest deployment of renewable energy in the nation has been in Texas, aside from in California which leads overall. Here a system of renewable energy zones in the sparsely populated but windy and sunny west, north and center of the state feed cities to the east with power from wind and more recently solar.
This was enabled by transmission lines whose cost was socialized among the state’s ratepayers – a tremendous irony given that the state’s politicians would be some of the last in the nation to want to be identified with socializing anything.
Another example is Louisiana, which saw a healthy residential solar market over the last decade due to a 50% state rebate. The policy has expired, but when operating it was exactly the sort of outright subsidy that right-wing media and politicians rail against.
Of course there is also North Carolina, which built the 2nd-largest solar market in the nation on the back of successful state-level implementation of PURPA, a federal law. Finally there is Virginia, where large-scale projects are booming following a 2018 law that found that 5 GW of solar is in the public interest.
Furthermore, while conservatives continually expound the virtues of the free market, the reality of the electricity sector in the “deep red” South is anything but that. The region missed out on the wave of deregulation in the 1990s, and remains dominated by monopoly utilities regulated by the state: a union of big business and big government where competition is non-existent.
This has also meant that the solar which has been deployed in the South is mostly not the kind of rooftop solar that many think of as embodying energy independence, but rather large-scale solar built in farms, fields and forests.
Where to from here?
With such contradictions between stated ideology and practice, it is less clear what makes for successful renewable energy policy in the South. However, opening up markets appears to be working not only in South Carolina, but also in Florida, where third-party solar companies are making inroads after the state’s voters rejected a well-funded and duplicitous utilities’ campaign to kill distributed solar.
SEIA’s Hopper says that she is “aggressively optimistic” about solar in Florida. As utilities have dominated large-solar deployment in the state, even as the state declined federal solar incentives earlier this year, she says that she sees opening up the state’s booming utility-scale solar market to competition as a priority.
Some parts of the region may be harder than others, and it is notable that SEIA has not had as much to say about Alabama, Mississippi or Louisiana, which are largely controlled by utility giants Southern Company and Entergy, or the area under the thumb of the Tennessee Valley Authority, one of the most anti-solar entities in the power sector.
Abby Hopper says ultimately, demand from customers – both individuals and corporations – is the key to transforming policy. “You replicate these victories by customer demand,” Hopper told pv magazine. “That combination of voices from the customer are what’s going to drive change.”
Related News
New Hydro One CEO aims to repair relationship with Ontario government — and investors
Hydro One CEO Mark Poweska aims to rebuild ties with Ontario's provincial government, investors, and communities, stabilize the executive team, boost earnings and dividends, and reset strategy after the scrapped Avista deal and regulatory setbacks.
Key Points
He plans to mend government and investor relations, rebuild the C-suite, and refocus growth after the failed Avista bid.
✅ Rebuild ties with Ontario government and regulators
✅ Stabilize executive team and governance
✅ Refocus growth after Avista deal termination
The incoming chief executive officer of Hydro One Ltd. said Thursday that he aims to rebuild the relationship between the Ontario electrical utility and the provincial government, as seen in COVID-19 support initiatives, as well as ties between the company and its investors.
Mark Poweska, the former executive vice-president of operations at BC Hydro, was announced as Hydro One’s new president and CEO in March. His hiring followed a turbulent period for Toronto-based Hydro One, Ontario’s biggest distributor and transmitter of electricity, with large-scale storm restoration efforts underscoring its role.
Hydro One’s former CEO and board of directors departed last year under pressure from a new Ontario government, the utility’s biggest shareholder. Earlier this year, the company’s plan for a $6.7-billion takeover fell apart over concerns of political interference and the utility clashed with the new provincial government and Progressive Conservative Premier Doug Ford over executive compensation levels, amid rate policy debates such as no peak rate cuts for self-isolating customers.
Hydro One facing $885 million charge as regulator upholds tax decision forcing it to share savings with customers
Shares of Hydro One were up more than eight per cent year-to-date on Wednesday, closing at $21.74. However, the stock price was up only six per cent from Hydro One’s 2015 initial public offering price, something its incoming CEO seems set on changing.
“One of my first priorities will be to solidify the executive team and build relationships with the Government of Ontario, our customers, informed by customer flexibility research, and communities, indigenous leaders, investors, and our partners across the electricity sector,” Poweska said Thursday on a conference call outlining Hydro One’s first-quarter results. “At the same time, I will be working to earn the trust and confidence of the investment community.”
Hydro One reported a profit of $171 million for the three months ended March 31, while peers such as Hydro-Québec reported pandemic-related losses as the sector adapted. Net income for the first quarter was down from $222 million a year earlier, which was due to $140 million in costs related to the scrapping of Hydro One’s proposed acquisition of U.S. energy company Avista Corp.
Hydro One Ltd. appointed Mark Poweska as President and CEO.
In January, Hydro One said the proposed takeover of Spokane, Wash.-headquartered Avista, an approximately $6.7-billion deal announced in July 2017, was being called off. As a result, Hydro One said it would pay Avista a US$103 million break fee.
Revenues net of purchased power for the first quarter rose to $952 million, up by 15.4 per cent compared to last year, Hydro One said, helped by higher distribution revenues. Adjusted profit for the quarter, which removes the Avista-related costs, was $311 million, up from $210 million a year ago.
The company is hiking its quarterly dividend to 24.15 cents per share, up five per cent from the last increase in May 2018, while also launching a pandemic relief fund for customers.
Poweska is taking over for acting president and CEO Paul Dobson this month, and the new executive will be charged with revamping Hydro One’s C-suite.
The company’s chief operating officer, chief legal officer, and chief corporate development officer have all departed this year. The company’s chief human resource officer has retired as well, although Poweska did announce Thursday that he had appointed acting chief financial officer Chris Lopez as CFO.
“Hydro One’s significant bench strength and management depth will ensure stability and continuity during this period of transition, as the sector pursues Hydro-Québec energy transition as well,” the company said in its first-quarter earnings press release.
Ontario remains Hydro One’s biggest shareholder, owning approximately 47 per cent of the company.
Related News
Calgary electricity retailer urges government to scrap overhaul of power market
Alberta Capacity Market Overhaul faces scrutiny over electricity costs, reliability targets, investor certainty, and AESO design, as UCP reviews NDP reforms, renewables integration, and deregulated energy-only alternatives impacting generators, ratepayers, and future power price volatility.
Key Points
A shift paying generators for capacity and energy to improve reliability; critics warn of higher electricity costs.
✅ UCP reviewing NDP plan and subsidies amid market uncertainty
✅ AESO cites reliability needs as coal retires, renewables grow
✅ Critics predict overprocurement and premature launch cost spikes
Jason Kenney's government is facing renewed pressure to cancel a massive overhaul of Alberta's power market that one player says will needlessly spike costs by hundreds of millions of dollars, amid an electricity sector in profound change today.
Nick Clark, who owns the Calgary-based electricity retailer Spot Power, has sent the Alberta government an open letter urging it to walk away from the electricity market changes proposed by the former NDP government.
"How can you encourage new industry to open up when one of their raw material costs will increase so dramatically?" Clark said. "The capacity market will add more costs to the consumer and it will be a spiral downwards."
But NDP Leader Rachel Notley, whose government ushered in the changes, said fears over dramatic cost increases are unfounded.
"There are some players within the current electricity regime who have a vested interest in maintaining the current situation," Notley said
Kenney's UCP vowed during the recent election to review the current and proposed electricity market options, as the electricity market heads for a reshuffle, with plans to report on its findings within 90 days.
The party also promised to scrap subsidies for renewable power, while ensuring "a market-based electricity system" that emphasizes competition in Alberta's electricity market for consumers.
The New Democrats had opted to scrap the current deregulated power market — in place since the Klein era — after phasing out coal-fired generation and ushering in new renewable power as part of changes in how Alberta produces and pays for electricity under their climate change strategy.
The Alberta Electric System Operator, which oversees the grid, says the province will need new sources of electricity to replace shuttered coal plants and backstop wind and solar generators, while meeting new consumer demand.
After consulting with power companies and investors, the AESO concluded in late 2016 the electricity market couldn't attract enough investment to build the needed power generation under the current model.
The AESO said at the time investors were concerned their revenues would be uncertain once new plants are running. It recommended what's known as a capacity market, which compensates power generators for having the ability to produce electricity, even when they're not producing it.
In other words, producers would collect revenue for selling electricity into the grid and, separately, for having the capacity to produce power as a backstop, ensuring the lights stay on. Power generators would use this second source of income to help cover plant construction costs.
Clark said the complex system introduces unnecessary costs, which he believes would hurt consumers in the end. He said what's preventing investment in the power market is uncertainty over how the market will be structured in the future.
"What investors need to see in this market is price certainty, regulatory ease, and where the money they're putting into the marketplace is not at risk," he said.
"They can risk their own money, but if in fact the government comes in and changes the policy as it was doing, then money stayed away from the province."
Notley said a capacity market would not increase power bills but would avoid big price swings, with protections like a consumer price cap on power bills also debated, while bringing greener sources of energy into Alberta's grid.
"Moving back to the [deregulated] energy-only market would make a lot of money for a few people, and put consumers, both industrial and residential, at great risk."
Clark disagrees, citing Enmax's recent submissions to the Alberta Utilities Commission, in which the utility argues the proposed design of the capacity market is flawed.
In its submissions to the commission, which is considering the future of Alberta's power market, Enmax says the proposed system would overestimate the amount of generation capacity the province will need in the future. It says the calculation could result in Alberta procuring too much capacity.
The City of Calgary-owned utility says this could drive up costs by anywhere from $147 million to $849 million a year. It says a more conservative calculation of future electricity demand could avoid the extra expense.
An analysis by a Calgary energy consulting firm suggests a different feature of the proposed power market overhaul could also lead to a massive spike in costs.
EDC Associates, hired by the Consumers' Coalition of Alberta, argues the proposal to launch the new system in November 2021 may be premature, because it could bring in additional supplies of electricity before they're needed.
The consultant's report, also filed with the Alberta Utilities Commission, estimates the early launch date could require customers to pay 40 per cent more for electricity amid rising electricity prices in the province — potentially an extra $1.4 billion — in 2021/22.
"The target implementation date is politically driven by the previous government," said Duane Reid-Carlson, president of EDC Associates.
Reid-Carlson recommends delaying the launch date by several years and making another tweak: reducing the proposed target for system reliability, which would scale back the amount of power generation needed to backstop renewable sources.
"You could get a result in the capacity market that would give a similar cost to consumers that the [deregulated] energy-only market design would have done otherwise," he said.
"You could have a better risk profile associated with the capacity market that would serve consumers better through lower cost, lower price volatility, and it would serve generators better by giving them better access to capital at lower costs."
The UCP government did not respond to a request for comment.
Related News
Experiment Shows We Can Actually Generate Electricity From The Night Sky
Nighttime thermoradiative power converts outgoing infrared radiation into electricity using semiconductor photodiodes, leveraging negative illumination and sky cooling to harvest renewable energy from Earth-to-space heat flow when solar panels rest, regardless of weather.
Key Points
Nighttime thermoradiative power converts Earth's outgoing infrared heat into electricity using semiconductor diodes.
✅ Uses negative illumination to tap Earth-to-space heat flow
✅ Infrared semiconductor photodiodes generate small nighttime current
✅ Theoretical output ~4 W/m^2; lab demo reached 64 nW/m^2
There's a stark contrast between the freezing temperatures of space and the relatively balmy atmosphere of Earth, and that contrast could help generate electricity, scientists say – and alongside concepts such as space-based solar power, utilizing the same optoelectronic physics used in solar panels. The obvious difference this would have compared with solar energy is that it would work during the night time, a potential source of renewable power that could keep on going round the clock and regardless of weather conditions.
Solar panels are basically large-scale photodiodes - devices made out of a semiconducting material that converts the photons (light particles) coming from the Sun into electricity by exciting electrons in a material such as silicon, while concepts like space solar beaming could complement them during adverse weather.
In this experiment, the photodiodes work 'backwards': as photons in the form of infrared radiation - also known as heat radiation - leave the system, a small amount of energy is produced, similar to how raindrop electricity harvesting taps ambient fluxes in other experiments.
This way, the experimental system takes advantage of what researchers call the "negative illumination effect" – that is, the flow of outgoing radiation as heat escapes from Earth back into space. The setup explained in the new study uses an infrared semiconductor facing into the sky to convert this flow into electrical current.
"The vastness of the Universe is a thermodynamic resource," says one of the researchers, Shanhui Fan from Stanford University in California.
"In terms of optoelectronic physics, there is really this very beautiful symmetry between harvesting incoming radiation and harvesting outgoing radiation."
It's an interesting follow-up to a research project Fan participated in last year: a solar panel that can capture sunlight while also allowing excess heat in the form of infrared radiation to escape into space.
In the new study, this "energy harvesting from the sky" process can produce a measurable amount of electricity, the researchers have shown – though for the time being it's a long way from being efficient enough to contribute to our power grids, but advances in peer-to-peer energy sharing could still make niche deployments valuable.
In the team's experiments they were able to produce 64 nanowatts per square metre (10.8 square feet) of power – only a trickle, but an amazing proof of concept nevertheless. In theory, the right materials and conditions could produce a million times more than that, and analyses of cheap abundant electricity show how rapidly such advances compound, reaching about 4 watts per square metre.
"The amount of power that we can generate with this experiment, at the moment, is far below what the theoretical limit is," says one of the team, Masashi Ono from Stanford.
When you consider today's solar panels are able to generate up to 100-200 watts per square metre, and in China solar is cheaper than grid power across every city, this is obviously a long way behind. Even in its earliest form, though, it could be helpful for keeping low-power devices and machines running at night: not every renewable energy device needs to power up a city.
Now that the researchers have proved this can work, the challenge is to improve the performance of the experimental device. If it continues to show promise, the same idea could be applied to capture energy from waste heat given off by machinery, and results in humidity-powered generation suggest ambient sources are plentiful.
"Such a demonstration of direct power generation of a diode facing the sky has not been previously reported," explain the researchers in their published paper.
"Our results point to a pathway for energy harvesting during the night time directly using the coldness of outer space."
The research has been published in Applied Physics Letters.
Related News
Summerland solar power project will provide electricity
Summerland Solar+Storage Project brings renewable energy to a municipal utility with photovoltaic panels and battery storage, generating 1,200 megawatts from 3,200 panels on Cartwright Mountain to boost grid resilience and local clean power.
Key Points
A municipal solar PV and battery system enabling Summerland Power to self-generate electricity on Cartwright Mountain.
✅ 3,200 panels, 20-year batteries, 35-year panel lifespan
✅ Estimated $7M cost, $6M in grants, utility reserve funding
✅ Site near grid lines; 2-year timeline with 18-month lead
A proposed solar energy project, to be constructed on municipally-owned property on Cartwright Mountain, will allow Summerland Power to produce some of its own electricity, similar to how Summerside's wind power supplies a large share locally.
On Monday evening, municipal staff described the Solar+Storage project, aligning with insights from renewable power developers that combining resources yields better projects.
The project will include around 3,200 solar panels and storage batteries, giving Summerland Power the ability to generate 1,200 megawatts of electrical power.
This is the amount of energy used by 100 homes over the course of a year.
The solar panels have an estimated life expectancy of 35 years, while the batteries have a life expectancy of 20 years.
“It’s a really big step for a small utility like ours,” said Tami Rothery, sustainability/alternative energy coordinator for Summerland. “We’re looking forward to moving towards a bright, sunny energy future.”
She said the price of solar panels has been dropping, with lower-cost solar contracts reported in Alberta, and the quality and efficiency of the panels has increased in recent years.
The total cost of the project is around $7 million, with $6 million to come from grant funding and the remainder to come from the municipality’s electrical utility reserve fund, while policy changes such as Nova Scotia's solar charge delay illustrate evolving market conditions.
The site, a former public works yard and storage area, was selected from 108 parcels of land considered by the municipality.
She said the site, vacant since the 1970s, is close to main electrical lines and will not be highly visible once the panels are in place, much like unobtrusive rooftop solar arrays in urban settings.
Access to the site is restricted, resulting in natural security to the solar installation.
Jeremy Storvold, general manager of Summerland’s electrical utility, said the site is 2.5 kilometres from the Prairie Valley electrical substation and close to the existing public works yard.
However, some in the audience on Monday questioned the location of the proposed solar installation, suggesting the site would be better suited for affordable housing in the community.
The timeline for the project calls for roughly two years before the work will be completed, since there is an 18-month lead time in order to receive good quality solar panels, reflecting the surge in Alberta's solar growth that is straining supply chains.
Related News
Kenney holds the power as electricity sector faces profound change
Alberta Electricity Market Reform reshapes policy under the UCP, weighing a capacity market versus energy-only design, AESO reliability rules, renewables targets, coal phase-out, carbon pricing, consumer rates, and investment certainty before AUC decisions.
Key Points
Alberta Electricity Market Reform is the UCP plan to reassess capacity vs energy-only, renewables, and carbon pricing.
✅ Reviews capacity market timeline and AESO procurement
✅ Alters subsidies for renewables; slows wind and solar growth
✅ Adjusts industrial carbon levy; audits Balancing Pool losses
Hearings kicked off this week into the future of the province’s electricity market design, amid an electricity market reshuffle pledged by the province, but a high-stakes decision about the industry’s fate — affecting billions of dollars in investment and consumer costs — won’t be made inside the meeting room of the Alberta Utilities Commission.
Instead, it will take place in the office of Jason Kenney, as the incoming premier prepares to pivot away from the seismic reforms to Alberta’s electricity sector introduced by the Notley government.
The United Conservative Party has promised to adopt market-based policies, reflecting changes to how Alberta produces and pays for power, that will reset how the sector operates, from its approach to renewable energy and carbon pricing to re-evaluating the planned transition to an electricity “capacity market.”
“Every ball in electricity is up in the air right now,” Vittoria Bellissimo, of the Industrial Power Consumers Association of Alberta, said Tuesday during a break in the commission hearings.
Industry players are uncertain how quickly the UCP will change direction on power policies, but there’s little doubt Kenney’s government will take a strikingly different approach to the sector that keeps the lights on in Alberta.
“There’s some things they are going to change that are going to impact the electricity industry significantly,” said Duane Reid-Carlson, chief executive of consultancy EDC Associates.
“But I don’t think it’s going to be upheaval. I think the new government will proceed with caution because electricity is the foundation of our economy.”
Alberta’s electricity market has been turned on its head in recent years due to the recession, power prices dropping to near two-decade lows and several transformative policies initiated by the NDP.
The Notley government’s climate plan included an accelerated phase-out of all coal-fired generation and set targets for more renewable energy.
The most significant, but least-understood, move has been the planned shift to an electricity capacity market in 2021.
Under the strategy, generators will no longer solely be paid for the power produced and sold into the market; they will also receive payments for having electricity capacity available to the grid on demand.
The change was recommended by the Alberta Electric System Operator (AESO) as a way to reduce price volatility and provide more reliability than the current energy-only market, which some argue needs more competition to deliver better outcomes.
The independent system operator and industry officials have spent more than two years planning the transition since the switch was announced in late 2016. Proposed rules for the new system, outlining market changes, are now being discussed at the Alberta Utilities Commission hearings.
However, there is no ironclad guarantee the system remake will go ahead following the UCP’s election victory last week — amid calls to scrap the overhaul from a Calgary retailer — it plans to study the issue further — while other substantive electricity changes are already in store.
The UCP has promised to end “costly subsidies” to renewable energy developments and abandon the NDP’s pledge to have such energy sources make up 30 per cent of all power generation by 2030.
It will remove the planned phase-out of coal-fired electricity generation, although federal regulations for a 2030 prohibition remain in place.
It will also ask the auditor general to conduct a special audit of the massive losses sustained by the province’s Balancing Pool due to power purchase arrangements being handed back to the agency three years ago.
While Kenney has pledged to cancel the provincewide carbon tax, a levy on large industrial greenhouse gas emitters (such has power plants) will still be charged, although at a reduced rate of $20 a tonne.
The biggest unknown remains the power market’s structure, which underpins how the entire system operates.
The UCP has promised to consult on the shift to the capacity market and report back to Albertans within 90 days.
The complex issue may sound like an eye-glazer, but it will have a profound effect on industry investment, as well as how much consumers pay on their monthly electricity bills.
A number of industry players worry the capacity market will lead AESO to procure more power than is necessary, foisting unnecessary costs onto all Albertans.
“I still have concerns for what the impact on consumers is going to be,” said energy market consultant Sheldon Fulton. “I’d love to see the capacity market go away.”
An analysis by EDC Associates found the transition to a capacity market will procure additional electricity before it’s needed, requiring consumers to pay up to 40 per cent more — an extra $1.4 billion — for power in 2021-22 than under the existing market structure.
“I don’t think there’s any prejudged outcome,” said Blake Shaffer, former head trader at TransAlta Corp. and a fellow-in-residence at the C.D. Howe Institute.
“But it really matters about getting this right.”
Evan Bahry, executive director of the Independent Power Producers Society of Alberta, said the fact the UCP’s review was confined to just 90 days is helpful, as it avoids throwing the entire industry into a prolonged period of uncertainty.
As for the greening of Alberta’s power grid, amid growing attention to clean grids and storage, the demise of the NDP’s Renewable Electricity Program will likely slow down the rapid pace of wind and solar development. But it’s unlikely to stop the growth trend as costs continue to fall for such developments.
“Renewables over the last number of years have evolved to the point that they make sense on a subsidy-free basis,” said Dan Balaban, CEO of Greengate Power Corp., which has developed 480 MW of wind power in Alberta and Ontario.
“There is a path to clean electricity ahead.”
Chris Varcoe is a Calgary Herald columnist.
Related News
Charting a path to net zero electricity emissions by the middle of the century
Clean Energy Standard charts a federal path to decarbonize the power sector, scaling renewables, wind, solar, nuclear, and carbon capture to slash emissions, create green jobs, and reach net-zero targets amid the climate crisis.
Key Points
A federal policy to expand clean power and cut emissions with renewables, nuclear, and carbon capture toward net-zero.
✅ Mandates annual increases in clean electricity supply
✅ Includes renewables, nuclear, hydro, and carbon capture
✅ Targets rapid emissions cuts and net-zero by mid-century
The world has been put on notice. Last year, both the UN Intergovernmental Panel on Climate Change and the U.S. National Climate Assessment warned that we need to slash greenhouse gas emissions to avoid disastrous impacts of global warming. Their direct language forecasting devastating effects on our health, economics, environment, and ways of life has made even more urgent the responsibility we all have to act boldly to combat the climate crisis.
This week, we’re adding one important tool for addressing the climate crisis to the national conversation.
Together, we’re taking that bold action. The Climate reports made clear that to limit the global temperature rise and stave off devastating impacts to our climate—human-caused CO2 emissions must fall rapidly by 2030 and that we, as a global community, underscored at the Katowice climate talks, must reach net-zero emissions by the middle of the century. The Clean Energy Standard is federal legislation that offers a pathway toward decarbonizing our power sector and helping our nation accomplish a goal of net-zero emissions by the 2050s.
Under this plan, any company selling retail electricity will have a mandate to increase the amount of clean energy provided to its customers. It will incentivize clean electricity investment to put the U.S. on a sustainable path.
To deal most effectively with a crisis, all tools must be on the table. Our plan focuses solely on emissions, and there is a place for all technologies that can put us on the path to net zero. That will mean drastic increases in wind and solar energy for sure, as states like California pursue a 100% carbon-free electricity mandate to accelerate deployment, but nuclear power, hydro power, and fossil fuels with carbon capture and storage all have important roles to play.
We’re doing this because the science is clear – tackling our climate crisis requires serious and rapid action to control greenhouse gas emissions, and the push for decarbonization is irreversible according to many. Inaction on the climate crisis puts our families at risk, and we’re not wasting any time. This is also an opportunity to create good-paying green jobs that can last generations and uplift the middle class.
We are doing this for the environment, but also for jobs and economic competitiveness. The green economy is the future and we’re ready to see it grow, with states like New York advancing a Green New Deal that drives innovation. The United States can lead, or we can follow, and we want our nation to lead.
And, because as a New Mexican and a Minnesotan, we know that the impacts of climate change go far beyond the headlines and political discourse. It means devastation within tamarack forests and an increase in deadly fires. It means hotter summers and shorter winters with extreme temperature swings throughout the year. It means devastating flash floods with increasingly intense rain. It’s impacting our pocketbooks when farmers and small businesses who work the land in rural communities are unable to make ends meet.
States across the country are already acting to combat the climate crisis – including Minnesota's 2050 carbon-free electricity plan and New Mexico. But in order to truly address climate change, we have to be in this together as Americans. If the problem is far-reaching, our solutions must be equally as holistic.
It's why we've worked with green groups and activists, unions, and communities across the country - from urban to rural - to create a solution that understands the different starting points communities face in reaching net zero emissions, but doesn't shrink from the absolute need to reach that standard.
There is not one solution to climate change – it will take a collective group of individuals prepared to boldly act. And we are ready to take on that fight.
In Congress, we have formed the House Select Committee on the Climate Crisis and the Senate Democrats’ Special Committee on the Climate Crisis to hear from everyday Americans how climate change is affecting them – and how we can come together to find solutions that build on the historic climate deal passed this year. We have heard the stories of young people worried about their futures. And we realize there is a sense of urgency to act.
Over the coming weeks and months, we will be building support from communities across the country to make this plan a reality. We will continue working with stakeholders to ensure every voice is heard. Most importantly, we will continue listening to you and your communities.
Related News
'Electricity out of essentially nothing': Invention creates power from falling snow
Snow-powered nanogenerator harvests static electricity from falling snow using a silicone triboelectric design, enabling energy harvesting, solar panel support during snowfall, and dual-use sensing for weather monitoring and wearable winter sports analytics.
Key Points
A silicone triboelectric device that harvests snowDcharge to generate power and enable sensing.
✅ Triboelectric silicone layer captures charge from falling snow.
✅ Integrates with solar arrays to maintain power during snowfall.
✅ Functions as weather and motion sensor for winter sports.
Scientists from University of California, Los Angeles and McMaster University have invented a nanogenerator that creates electricity from falling snow.
Most Canadians have already seen a mini-version of this, McMaster Prof. Ravi Selvaganapathy told CTV’s Your Morning. “We find that we often get shocked in the winter when it’s dry when we come in into contact with a conductive surface like a doorknob.”
The thin device works by harnessing static electricity: positively-charged, falling snow collides with the negatively-charged silicone device, which produces a charge that’s captured by an electrode.
“You separate the charges and create electricity out of essentially nothing,” Richard Kaner, who holds UCLA’s Dr. Myung Ki Hong Endowed Chair in Materials Innovation and whose lab has explored turning waste into graphene, said in a press release.
“The device can work in remote areas because it provides its own power and does not need batteries or reliance on home storage systems such as the Tesla Powerwall, which store energy for later use,” he said, explaining that the device was 3D printed, flexible and inexpensive to make because of the low cost of silicone.
“It’s also going to be useful in places like Canada, where we get a lot of snow and are pursuing a net-zero grid by 2050 to cut emissions. We can extract energy from the environment,” Selvaganapathy added.
The team, which also included scientists from the University of Toronto, published their findings in Nano Energy journal last year, but a few weeks ago, they revealed the device’s more practical uses.
About 30 per cent of the Earth’s surface is covered by snow each winter, which can significantly limit the energy generated by solar panels, including rooftop solar grids in cold climates.
So the team thought: why not simply harness electricity from the snow whenever the solar panels were covered?
Integrating their device into solar panel arrays could produce a continuous power supply whenever it snows, potentially as part of emerging virtual power plants that aggregate distributed resources, study co-author and UCLA assistant researcher Maher El-Kady explained.
The device also serves as a weather-monitoring station by recording how much snow is falling and from where; as well as the direction and speed of the wind.
The team said they also want to incorporate their device into weather sensors to help them better acquire and transmit electronic signals, supporting initiatives to use AI for energy savings across local grids. They said several Toronto-based companies -- which they couldn’t name -- have expressed interest in partnering with them.
Selvaganapathy said the device would hop on the trend of “sensors being incorporated into what we wear, into our homes and even to detect electricity theft in some markets in order to monitor a lot of the things that are important to us”
But the device’s arguably larger potential use is being integrated into technology to monitor athletes and their performances during winter sports, such as hiking, skiing and cross-country skiing.
Up to now, the movement patterns used during cross-country skiing couldn’t be detected by a smart watch, but this device may be able to.
Scientists such as Kaner believe the technology could usher in a new era of self-monitoring devices to assess an athlete’s performance while they’re running, walking or jumping.
The device is simply a proof of concept and the next step would be figuring out how to generate more electricity and integrate it into all of these potential devices, Selvaganapathy said.