Voltage drop formula for a given cable size

Voltage Drop Formula explained

To accurately calculate the voltage drop for a given cable size, length, and current, you need to accurately know the resistance of the type of cable you’re using. Voltage drop formulas can assist you to manually calculate voltage drop in cables that are under full load in branch circuits. It does not matter if you are working with copper or aluminum conductors.

 

DC / single phase calculation

The voltage drop V in volts (V) is equal to the wire current I in amps (A) times 2 times one way wire size length L in feet (ft) times the wire resistance per 1000 feet R in ohms (Ω/kft) divided by 1000:

 

Vdrop (V) = Iwire (A) × Rwire(Ω)

Iwire (A) × (2 × L(ft) × Rwire(Ω/kft) / 1000(ft/kft))

 

The voltage drop V in volts (V) is equal to the wire current I in amps (A) times 2 times one way wire length L in meters (m) times the wire resistance per 1000 meters R in ohms (Ω/km) divided by 1000:

 

Vdrop (V) = Iwire (A) × Rwire(Ω)

Iwire (A) × (2 × L(m) × Rwire (Ω/km) / 1000(m/km))

 

3 phase calculation

The line to line voltage drop V in volts (V) is equal to square root of 3 times the wire current I in amps (A) times one way wire length L in feet (ft) times the wire resistance per 1000 feet R in ohms (Ω/kft) divided by 1000:

 

Vdrop (V) = √3 × Iwire (A) × Rwire (Ω)

= 1.732 × Iwire (A) × (L(ft) × Rwire (Ω/kft) / 1000(ft/kft))

 

The line to line voltage drop V in volts (V) is equal to square root of 3 times the wire current I in amps (A) times one way wire length L in meters (m) times the wire resistance per 1000 meters R in ohms (Ω/km) divided by 1000:

 

Vdrop (V) = √3 × Iwire (A) × Rwire (Ω)

= 1.732 × Iwire (A) × (L(m) × Rwire (Ω/km) / 1000(m/km))

 

Wire diameter calculations

The n gauge wire diameter dn in inches (in) is equal to 0.005in times 92 raised to the power of 36 minus gauge number n, divided by 39:

 

dn (in) = 0.005 in × 92(36-n)/39

 

The n gauge wire diameter dn in millimeters (mm) is equal to 0.127mm times 92 raised to the power of 36 minus gauge number n, divided by 39:

 

dn (mm) = 0.127 mm × 92(36-n)/39

 

Wire cross sectional area calculations

The n gauge wire's cross sercional area An in kilo-circular mils (kcmil) is equal to 1000 times the square wire diameter d in inches (in):

 

An (kcmil) = 1000×dn2 = 0.025 in2 × 92(36-n)/19.5

 

The n gauge wire's cross sercional area An in square inches (in2) is equal to pi divided by 4 times the square wire diameter d in inches (in):

 

An (in2) = (π/4)×dn2 = 0.000019635 in2 × 92(36-n)/19.5

 

The n gauge wire's cross sercional area An in square millimeters (mm2) is equal to pi divided by 4 times the square wire diameter d in millimeters (mm):

 

An (mm2) = (π/4)×dn2 = 0.012668 mm2 × 92(36-n)/19.5

 

Wire resistance calculations

The n gauge wire resistance R in ohms per kilofeet (Ω/kft) is equal to 0.3048×1000000000 times the wire's resistivity ρ in ohm-meters (Ω·m) divided by 25.42 times the cross sectional area An in square inches (in2):

 

R(Ω/kft) = 0.3048 × 109 × ρ(Ω·m) / (25.42 × An (in2))

 

The n gauge wire resistance R in ohms per kilometer (Ω/km) is equal to 1000000000 times the wire's resistivity ρ in ohm-meters (Ω·m) divided by the cross sectional area An in square millimeters (mm2):

 

R(Ω/km) = 109 × ρ(Ω·m) / An (mm2)

On-Line Buyer's Guide

The Electricity Forum Online Transmission & Distribution and Industrial Electrical Power Buyer's Guides are an interactive reference tool for buyers and specifiers, to find information on electric circuits, equipment, companies, electric current products and services for North America's electrical industry. Search through hundreds of leading equipment suppliers and thousands of product categories. Add Your Company Today!

Free Magazine Subscription

The Electricity Forum is a North American "value added" publisher of Transmission & Distribution print/digital magazine: Electricity Today - a leading electrical transmission and distribution magazine. Magazine is distributed FREE of charge to North American electrical industry professionals.

Contribute To The Electricity Forum

The Electricity Forum is interested in publishing your technical, non-commercial articles, on a wide variety of subjects. We are seeking original content for our Transmission and Distribution Channels. Click here to view our author guidelines and submit your article today!